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Abstract26

For many infectious diseases of farm animals, there exist collective27

control programmes (CPs) that rely on the application of diagnostic28

testing at regular time intervals for the identi�cation of infected an-29

imals or herds. The diversity of these CPs complicates the trade of30

animals between regions or countries because the de�nition of freedom31

from infection di�ers from one CP to another. In this paper, we de-32

scribe a statistical model for the prediction of herd level probabilities33

of infection from longitudinal data collected as part of CPs against34

infectious diseases of cattle. The model was applied to data collected35

as part of a CP against infections by the bovine viral diarrhoea virus36

(BVDV) in Loire-Atlantique, France. The model represents infection37

as a herd latent status with a monthly dynamics. This latent status38

determines test results through test sensitivity and test speci�city. The39

probability of becoming status positive between consecutive months is40

modelled as a function of risk factors (when available) using logistic41

regression. Modelling is performed in a Bayesian framework. Prior42

distributions need to be provided for the sensitivities and speci�cities43

of the di�erent tests used, for the probability of remaining status posi-44

tive between months as well as for the probability of becoming positive45

between months. When risk factors are available, prior distributions46

need to be provided for the coe�cients of the logistic regression in47

place of the prior for the probability of becoming positive. From these48

prior distributions and from the longitudinal data, the model returns49

posterior probability distributions for being status positive in all herds50

on the current months. Data from the previous months are used for51

parameter estimation. The impact of using di�erent prior distributions52

and model settings on parameter estimation was evaluated using the53

data. The main advantage of this model is its ability to predict a prob-54

ability of being status positive on a month from inputs that can vary55

in terms of nature of test, frequency of testing and risk factor availabil-56

ity. The main challenge in applying the model to the BVDV CP data57

was in identifying prior distributions, especially for test characteristics,58

that corresponded to the latent status of interest, i.e. herds with at59

least one persistently infected (PI) animal. The model is available on60

Github as an R package (https://github.com/AurMad/STOCfree).61
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1 Introduction62

For many infectious diseases of farm animals, there exist collective control63

programmes that rely the application of diagnostic testing at regular time64

intervals for the identi�cation of infected animals or herds. In cattle, such dis-65

eases notably include infection by the bovine viral diarrhoea virus (BVDV)66

or by Mycobacterium avium subspecies paratuberculosis (MAP). These con-67

trol programmes (CP)s are extremely diverse. Their objective can range68

from decreasing the prevalence of infection to eradication. Participation in69

the CP can be voluntary or compulsory. The quali�cation of herds regarding70

infection can be based on a wide variety of testing strategies in terms of the71

nature of the tests used (identi�cation of antibodies vs. identi�cation of the72

agent), the groups of animals tested (e.g. breeding herd vs. young animals),73

number of animals tested, frequency of testing (once to several times a year,74

every calf born...). Even within a single CP, surveillance modalities may75

evolve over time. Such di�erences in CPs were described by van Roon et al.76

(2020b) for programmes targeting BVDV infections and byWhittington et al.77

(2019) for programmes against MAP.78

Di�erences in surveillance modalities can be problematic when purchas-79

ing animals from areas with di�erent CPs because the free status assigned80

to animals or herds might not be equivalent between CPs. A standardised81

method for both describing surveillance programmes and estimating con�-82

dence of freedom from surveillance data would be useful when trading animals83

across countries or regions. While inputs can vary between programmes, the84

output needs to be comparable across programmes. This is called output-85

based surveillance (Cameron, 2012). Probabilities measure both the chance86

of an event and the uncertainty around its presence/occurrence. If well de-87

signed, a methodology to estimate the probability of freedom from infection88

would meet the requirements of both providing a con�dence of freedom from89

infection as well as of being comparable whatever the context.90

Currently, the only quantitative method used to substantiate freedom91

from infection to trading partners is the scenario tree method (Martin et al.,92

2007). The method is applied to situations where there is a surveillance93

programme in place, with no animals or herds con�rmed positive on testing.94

Scenario trees are based on the premise that it is impossible to prove that95

a disease is totally absent from a territory unless the entire population is96

tested with a perfect test. What is estimated with the scenario tree method97

is the probability that the infection would be detected in the population if it98
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were present at a chosen design prevalence. The output from this approach99

is the probability that the infection prevalence is not higher than the design100

prevalence given the negative test results (Cameron, 2012). Therefore, this101

method is well suited for those countries that are free from infection and that102

want to quantify this probability of freedom from infection for the bene�t of103

trading partners (Norström et al., 2014).104

The scenario tree method is not adapted to countries or regions where105

there is a CP against an infectious disease which is still present. In such106

a context, only herds that have an estimated probability of freedom from107

infection that is deemed su�ciently high or, equivalently, a probability of108

infection that is deemed su�ciently low, would be safe to trade with. Identi-109

fying these herds involves estimating a probability of infection for each herd110

in the CP and then de�ning a decision rule to categorise herds as uninfected111

or infected based on these estimated probabilities.112

In this paper, we propose a method to estimate herd level probabilities113

of infection from heterogeneous longitudinal data generated by CPs. The114

method predicts herd-month level probabilities of being latent status positive115

from longitudinal data collected in CPs. The input data are test results, and116

associated risk factors when available. Our main objective is to describe this117

modelling framework by showing how surveillance data are related to the118

probabilities of infection (strictly speaking, probabilities of being latent status119

positive) and by providing details regarding the statistical assumptions that120

are made. A secondary objective is to estimate these probabilities of being121

latent status positive, using di�erent de�nitions for the latent status, from122

surveillance data collected as part of a CP against the infection by the BVDV123

in Loire-Atlantique, France. The challenges of de�ning prior distributions124

and the implications of using di�erent prior distributions are discussed. R125

functions to perform the analyses described in this paper are gathered in an126

R package which is available from GitHub (https://github.com/AurMad/127

STOCfree).128
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2 Materials and methods129

2.1 Description of the model130

2.1.1 Conceptual representation of surveillance programmes131

Surveillance programmes against infectious diseases can be seen as imper-132

fect repeated measures of a true status regarding infection. In veterinary133

epidemiology, the issue of imperfect testing has traditionally been addressed134

using latent class models. With this family of methods, the true status re-135

garding infection is modelled as an unobserved quantity which is linked to136

test results through test sensitivity and speci�city. Most of the literature on137

the subject is on estimating both test characteristics and infection prevalence138

(Collins & Huynh, 2014). For the estimations to work, the same tests should139

be used in di�erent populations (Hui & Walter, 1980), the test characteristics140

should be the same among populations and test results should be condition-141

ally independent given the infection status (Toft et al., 2005; Johnson et al.,142

2009). Latent class models can also be used to estimate associations between143

infection, de�ned as the latent class, and risk factors when the test used is144

imperfect (Fernandes et al., 2019). In the study by Fernandes et al. (2019),145

the latent class was de�ned using a single test, through the prior distribu-146

tions put on sensitivity and speci�city. When using latent class models with147

longitudinal data, the dependence between successive test results in the same148

herds must be accounted for. In the context of estimating test characteristics149

and infection prevalence from 2 tests in a single population from longitudi-150

nal data, Nusinovici et al. (2015) proposed a Bayesian latent class model151

which incorporated 2 parameters for new infection and infection elimination.152

The model we describe below combines these di�erent aspects of latent class153

modelling into a single model.154

We propose to use a class of models called Hidden Markov Models (HMM,155

see Zucchini et al. (2017)). Using surveillance programmes for infectious dis-156

eases as an example, the principles of HMMs can be described as follows:157

the latent status (class) of interest is a herd status regarding infection. This158

status is evaluated at regular time intervals: HMMs are discrete time mod-159

els. The status at a given time only depends on the status at the previous160

time (Markovian property). The status of interest is not directly observed,161

however, there exists some quantity (such as test results) whose distribu-162

tion depends on the unobserved status. HMMs have been used for decades163
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in speech recognition (Rabiner, 1989) and other areas. They have also been164

used for epidemiological surveillance (Le Strat & Carrat, 1999), although not165

with longitudinal data from multiple epidemiological units such as herds. The166

model we developed is therefore a latent class model that takes into account167

the time dynamics in the latent status. The probability of new infection168

between consecutive time steps is modelled as a function of risk factors.169

Figure 1 shows how surveillance programmes are represented in the model170

as a succession of discrete time steps. The focus of this model is a latent171

status evaluated at the herd-month level. This latent status is not directly172

observed but inferred from its causes and consequences incorporated as data.173

The consequences are the test results. Test results do not have to be available174

at every time step for the model to work. The causes of infection are risk175

factors of infection. In the application presented below, the latent status176

will be either herd seropositivity or presence of a PI animal in the herd,177

depending on the testing scheme as well as on the prior distributions put178

on the characteristics of the tests used. The model estimates this latent179

status monthly, and predicts it for the last month of data. These herd-180

month latent statuses will be estimated/predicted from test results (BTM181

ELISA testing or con�rmatory testing) and risk factors (cattle introductions182

or local seroprevalence) recorded in each herd.183

2.1.2 Modelling framework, inputs and outputs184

The model is designed to use longitudinal data collected as part of surveil-185

lance programmes against infectious diseases. In such programmes, each herd186

level status is re-evaluated when new data (most commonly test results, but187

may also be data related to risk factors) are available. The model mimics188

this situation by predicting the probability of a positive status for all herds189

in the CP on the last month of available data. Data from all participating190

herds up to the month of prediction are used as historical data for parameter191

estimation (Figure 1).192

The estimation and prediction are performed within a Bayesian frame-193

work using Markov Chain Monte Carlo (MCMC) in the JAGS computer pro-194

gramme (Plummer, 2017). The model encodes the relationships between all195

the variables of interest in a single model. Each variable is modelled as drawn196

from a statistical distribution. The estimation requires prior distributions for197

all the parameters in the model. These priors are a way to incorporate either198

existing knowledge or hypotheses in the estimation. For example, we may199
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Figure 1: Conceptual representation of the implementation of a surveillance
programme within a herd. The focus of the model is the latent status regard-
ing infection, which is modelled at the herd-month level. This status partly
depends on risk factors and determines test results. In this diagram, risk
factors are represented as green dots when present and available test results
as blue shaded squares. The model predicts a probability of infection for the
most recent month in the surveillance programme using all the data collected
for the estimation of model parameters.
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know that the prevalence of herds infected with BVDV in our CP is probably200

lower than 20%, certainly lower than 30% and greater than 5%. Such con-201

straints can be speci�ed with a Beta distribution. The Beta distribution is202

bounded between 0 and 1, with 2 parameters α and β determining its shape.203

With the constraints speci�ed above, we could use as a prior distribution a204

Beta(α = 15, β = 100)1. If we do not know anything about this infection205

prevalence (which is rare), we could use a Beta(α = 1, β = 1) prior, which is206

uniform between 0 and 1. From the model speci�cation, the prior distribu-207

tions and the observed data, the MCMC algorithm draws samples from the208

posterior distributions of all the variables in the model. These posterior dis-209

tributions are the probability distributions for the model parameters given210

the data and the prior distributions. MCMC methods are stochastic and211

iterative. Each iteration is a set of samples from the joint posterior distri-212

butions of all variables in the model. The algorithm is designed to reach the213

target joint posterior distribution, but at any moment, there is no guarantee214

that it has done. To overcome this di�culty, several independent instances215

of the algorithm (i.e. several chains) are run in parallel. For a variable, if216

all the MCMC draws from the di�erent chains have the same distribution, it217

can be concluded that the algorithm has reached the posterior distribution.218

In this case, it is said that the model has converged.219

The focus of our model is the monthly latent status of each herd. This220

latent status depends on the data on occurrence of risk factors and it a�ects221

test results. The data used by the model are the test results and risk factors.222

At each iteration of the MCMC algorithm, given the data and priors, a herd223

status (0 or 1) and the coe�cients for the associations between risk factors,224

latent status and test results are drawn from their posterior distribution.225

In the next 3 sections, the parameters for which prior distributions are226

required, i.e. test characteristics, status dynamics and risk factor parameters,227

are described. The outputs of Bayesian models are posterior distributions for228

all model parameters. Speci�cally, in our model, the quantities of interest229

are the herd level probabilities of being latent status positive on the last230

test month in the dataset as well as test sensitivity, test speci�city, infection231

dynamic parameters and parameters for the strengths of association between232

risk factors and the probability of new infection. This is described in the233

1The Beta(α = 15, β = 100) distribution has a mean of 0.13 and a standard deviation
of 0.03. In R, it can be plotted using the following instructions curve(dbeta(x, 15,

100))
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Figure 2: Modelling of infection dynamics. The diagram shows hypothetical
latent statuses (0 for negative; 1 for positive) as a function of time in month,
with examples of all possible transitions. π1 = p(S+

1 ) is the probability
of being status positive at the �rst point in time, τ1 = p(S+

t |S−
t−1) is the

probability of becoming status positive and τ2 = p(S+
t |S+

t−1) is the probability
of remaining status positive.

corresponding sections.234

2.1.3 Latent status dynamics235

Between test events, uninfected herds can become infected and infected herds236

can clear the infection. The model represents the probability of having a237

positive status at each time step as a function of the status at the previous238

time step (Figure 2). For the �rst time step when herd status is assigned,239

there is no previous status against which to evaluate change. From the second240

time step when herd status is assigned, and onwards, herds that were status241

negative on the previous time step have a certain probability of becoming242

status positive and herds that were status positive have a certain probability243

of remaining status positive.244

These assumptions can be summarised with the following set of equa-245

tions2. The status on the �rst time step (S+
1 ) is a Bernoulli event with a246

Beta prior on its probability of occurrence:247

S+
1 ∼ Bernoulli(p(S+

1 )) (1)

2Statuses are estimated/predicted at the herd-month level. Herd is omitted from the
notation to facilitate reading. S+

t should be read as S+
ht where h represents the herd.

9

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 22, 2020. . https://doi.org/10.1101/2020.07.10.197426doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197426
http://creativecommons.org/licenses/by-nc-nd/4.0/


248

p(S+
1 ) ∼ Beta(π1a, π1b) (2)

From the second time step when herd status is assigned, and onwards,249

a positive status is also a Bernoulli event (S+
t ) with a probability of occur-250

rence that depends on the status at the previous time step as well as on251

the probability of becoming status positive and the probability of remaining252

status positive. In this case, the probability of becoming status positive is253

τ1 = p(S+
t |S−

t−1) and the probability of remaining positive is τ2 = p(S+
t |S+

t−1).254

S+
t ∼ Bernoulli(p(S+

t )) (3)
255

p(S+
t ) = (1− S+

t−1)τ1 + S+
t−1τ2 (4)

256

τ1 ∼ Beta(τ1a, τ1b) (5)
257

τ2 ∼ Beta(τ2a, τ2b) (6)

Therefore, the status dynamics can be completely described by p(S+
1 ), τ1258

and τ2.259

2.1.4 Incorporation of information on risk factors for new infec-260

tion261

The probability of new infection is not the same across herds. For example,262

herds that introduce a lot of animals or are in areas where infection preva-263

lence is high could be at increased risk of new infection (Qi et al., 2019).264

Furthermore, the association between a given risk factor and the probability265

of new infection could be CP dependent. For example, the probability of266

introducing infection through animal introductions will depend on the infec-267

tion prevalence in the population from which animals are introduced. As a268

consequence, estimates for these associations (as presented in the literature)269

could provide an indication about their order of magnitude, but their preci-270

sion may be limited. On the other hand, the CPs which are of interest in this271

work usually generate large amounts of testing data which could be used to272

estimate the strengths of association between risk factors and new infections273

within a given CP. The variables that are associated with the probability of274

new infection could increase the sensitivity and timeliness of detection.275

When risk factors for new infection are available, the model incorporates276

this information by modelling τ1 as a function of these risk factors through277

logistic regression, instead of the prior distribution for τ1.278
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Figure 3: Relation of the model latent status to test result. Sensitivity is the
probability of a positive test result in a status positive herd. Speci�city is
the probability of a negative test result in a status negative herd.

logit(τ1ht) = Xhtθ (7)

where Xht is a matrix of predictors for herd h at time t and θ is a vector279

of coe�cients. Normal priors are used for the coe�cients of the logistic280

regression.281

θi ∼ Normal(µi, σi) (8)

2.1.5 Test characteristics282

The model allows the inclusion of several test types but for the sake of clarity,283

we show the model principles for only one test type. These principles can be284

extended to several tests by specifying prior distributions for all tests.285

Tests are modelled as imperfect measures of the latent status (Figure 3).286

Test sensitivity is the probability of a positive test result given a positive287

latent status (Se = p(T+|S+), refers to true positives) and test speci�city288

is the probability of a negative test result given a negative latent status289

(Sp = p(T−|S−), refers to true negatives).290

Test result at time t is modelled as a Bernoulli event with probability291

p(T+
t ) of being positive.292

T+ ∼ Bernoulli(p(T+
t )) (9)
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The relation between the probability of testing positive, the probability293

of a positive status, test sensitivity and test speci�city is the following:294

p(T+
t ) = S+

t Se+ (1− S+
t )(1− Sp) (10)

Information or hypotheses regarding test characteristics are incorporated295

in the model as priors modelled by Beta distributions:296

Se ∼ Beta(Sea, Seb) (11)
297

Sp ∼ Beta(Spa, Spb) (12)

It is important to note that the prior distributions used for sensitivity298

and speci�city will determine what the latent status is. As an example, we299

consider the detection of BVDV infection with a test that detects BVDV300

speci�c antibodies in bulk tank milk. BVDV infection is associated with a301

long lasting antibody production. There can be cows that are seropositive302

long after the last PI animal has left the herd. In this situation, using a value303

of 1 for speci�city will de�ne the latent status as any herd with antibody304

positive cows. However, the herd-level speci�city of the test, de�ned as the305

probability of a negative test result in a herd with no PI animals, is lower306

than the animal-level speci�city de�ned as the probability of a negative test307

result in a sample from an non-PI animal. The speci�city of interest, i.e. the308

detection of farms with PI animals, will depend on the proportion of antibody309

positive lactating dairy herds that are in farms with PI animals. In turn, this310

will depend on many factors that are CP dependent such as the prevalence of311

infection or the proportion of farms that use vaccination against the BVDV.312

With antibody testing alone, it is therefore di�cult to de�ne accurate prior313

distributions for sensitivity and speci�city for the detection of farms with PI314

animals.315

However, it is possible to align the meaning of the latent status with the316

status of interest. In most CPs, positive routine tests will be followed by con-317

�rmatory testing. The objective of routine testing is to detect any potentially318

infected herd. The tests used for routine testing should be sensitive. The319

objective of con�rmatory testing is to identify truly infected herds among320

herds positive in routine testing. The testing procedure used for con�rma-321

tory testing should be both speci�c and sensitive. With our model, if these322

conditions are met and if prior distributions that re�ect these hypotheses are323

used, the posterior distributions for the characteristics of both testing phases324
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should be more accurate. A useful property of HMMs is that accounting for325

the status dynamics makes the results of tests performed on di�erent months326

in the same herd conditionally independent, because the conditional time de-327

pendence between statuses is modelled with the dynamics part of the model.328

For example, if a herd tests positive during routine testing, it will have a329

higher than average prior probability of infection in subsequent con�rmatory330

testing. As a further consequence of this, the posterior distribution for the331

speci�city of routine testing will depend on the proportion of herds that are332

con�rmed positive in con�rmatory testing.333

2.1.6 Prediction of a probability of infection334

In explaining how predictions are performed we use the following notation:335

ỹ is the predicted value for y, β̂ is the estimated value for β. The equation336

ỹ = β̂.x means that the predicted value for y is equal to x (data) times the337

estimated value for β.338

The model predicts herd-level probabilities of infection on the last month339

in the data mimicking regular re-evaluation as new data come in. If there340

is no test result available on this month, the predicted probability of being341

status positive (called p(S̃+∗
t )) is the predicted status on the previous month342

times τ̃1t if the herd was predicted status negative or times τ̂2 if the herd was343

predicted status positive (Table 1)3. This can be written as:344

p(S̃+∗
t ) = p(S̃+

t |Ŝ+
t−1, τ̃1t, τ̂2) = (1− Ŝ+

t−1).τ̃1t + Ŝ+
t−1.τ̂2 (13)

where:345

τ̃1t = logit−1(Xtθ̂) (14)

If a test result was available, the prediction must combine information346

from the test as well as previous information. The way to estimate this pre-347

dicted probability from p(S̃+∗
t ) and test results can be derived from Table 1.348

The predicted probability of being status positive can be computed as:349

p(S̃+
t |T+

t , S̃
+∗
t ) = T+

t .
Se.p(S̃+∗

t )

Se.p(S̃+∗
t )+(1−Sp)(1−p(S̃+∗

t ))
+

(1− T+
t ).

(1−Se).(1−p(S̃+∗
t ))

(1−Se).(1−p(S̃+∗
t ))+Sp.(1−p(S̃+∗

t ))

(15)

3Here τ̃1t is predicted from herd-month speci�c risk factors while τ̂2 is the same for all
herds and estimated from historical data.
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Table 1: Probability of test result by herd status. Cells on the �rst row are
test positive herds with true positives on the left-hand side and false positives
on the right-hand side. Cells on the second row are test negative herds with
false negatives on the left-hand side and true negatives on the right-hand
side.

Herdstatust
+ -

T
es
t t + Se.p(S+

t ) (1− Sp)(1− p(S+
t ))

- (1− Se).p(S+
t ) Sp.(1− p(S+

t ))

where T+
t = 1 when the test at time t is positive, T+

t = 0 when it is350

negative351

2.2 Application of the model to a control programme352

for BVDV infection in cattle353

2.2.1 Data354

The model was evaluated on data collected for the surveillance of BVDV355

infection in cattle in Loire-Atlantique, France. Data were available from356

1687 dairy herds between the beginning of 2010 and the end of 2016. Under357

the programme, each herd was tested twice a year with a bulk tank milk358

antibody ELISA test. For each campaign of testing, tests were performed359

for all the herds over a few weeks. Data on the number of cattle introduced360

into each herd with the associated date of introduction were also available.361

For the model evaluation, test data from the beginning of 2014 to the end362

of 2016 were used. Risk factor data collected between 2010 and 2016 were363

available to model (possibly lagged) associations between risk factors and364

latent status.365

2.2.2 Test results366

Test results were reported as optical density ratios (ODR). In the Loire-367

Atlantique CP, these ODRs are discretised into 3 categories using threshold368
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values of 35 and 60. ODR values below 35 are associated with low antibody369

levels and ODR values above 60 are associated with high antibody levels.370

Decision regarding which herds require further testing for the identi�cation371

and removal of PI animals is complex and involves the combination of test372

categories on 3 consecutive tests, spanning a year.373

In this work, the ODR values were discretised in order to convert them374

into either seropositive (antibodies detected) or seronegative (no antibodies375

detected) outcomes. The choice of the threshold to apply for the discreti-376

sation was based on the ODR distribution, which was clearly bimodal. For377

this purpose, the ODR distribution was modelled as a mixture of 2 normal378

distributions using the R mixdist package (Macdonald & Du, 2018). Assum-379

ing that one of the distributions was associated with seronegativity and the380

other one with seropositivity, the threshold that discriminated best between381

the 2 distributions was selected.382

2.2.3 Selection of risk factors383

A di�culty in the evaluation of putative risk factors was that Bayesian models384

usually take time to run, especially with large datasets as used here. It was385

therefore not possible to perform this selection with our Bayesian model.386

To circumvent this problem, logistic models as implemented in the R glm387

function (R Core Team, 2019) were used4. The outcome of these models was388

seroconversion de�ned as a binary event, and covariates of interest were risk389

factors for becoming status positive as de�ned through the τ1 variable. All390

herds with 2 consecutive test results whose �rst result was negative (ODR391

below the chosen threshold) were capable of seroconverting. Of these herds,392

the ones that had a positive result (ODR above the chosen threshold) on393

the second test were considered as having seroconverted. The time of event394

(seroconversion or not) was considered the mid-point between the 2 tests.395

Two types of risk factors of new infection were evaluated: infection through396

cattle introductions and infection through neighbourhood contacts (Qi et al.,397

2019). Cattle introduction variables were constructed from the number of an-398

imals introduced into a herd on a given date. In addition to the raw number of399

animals introduced, the natural logarithm of the number of animals (+1 be-400

cause ln(0) is not de�ned) was also evaluated. This was to allow a decreasing401

e�ect of each animal as the number of animals introduced increased. Regard-402

4The functions used to perform this evaluation are included in the STOCfree package.
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ing the neighbourhood risk, the test result data were used. For each testing403

campaign, the municipality-level prevalence of test positives (excluding the404

herd of interest) was calculated, and is subsequently termed 'local preva-405

lence'. It was anticipated that when local seroprevalence would increase, the406

probability of new infection in the herd of interest would increase as well.407

For all candidate variables, a potential problem was delayed detection,408

which relates to the fact that a risk factor recorded at one point in time may409

be detected through testing much later, even if the test is sensitive. For ex-410

ample, if a trojan cow (a non-PI female carrying a PI calf) is introduced into411

a herd, the lactating herd will only seroconvert when the PI calf is born and412

has had contact with the lactating herd. Therefore, for each candidate vari-413

able, the data were aggregated between the beginning of an interval (labelled414

lag1, in months from the outcome measurement) and the end of this inter-415

val (labelled lag2, in months from the outcome measurement). Models with416

all possible combinations of time aggregation between lag1 and lag2 were417

run, with lag1 set to 0 and lag2 set to 24 months. The best variables and418

time aggregation interval were selected based on low AIC value, biological419

plausibility and suitability for the Bayesian model.420

2.2.4 Bayesian models421

Four di�erent Bayesian models were considered. For all models, historical422

data were used for parameter estimation and the probability of infection on423

the last month in the dataset was predicted.424

Model 1 - Perfect routine test: in order to evaluate the monthly dy-425

namics of seropositivity and seronegativity, the Bayesian model was run426

without any risk factor and assuming that both test sensitivity and test427

speci�city were close to 1. The prior distributions for sensitivity and speci-428

�city were Se ∼ Beta(10000, 1) (percentiles: 5 = 1, 50 = 1, 95 = 1) and429

Sp ∼ Beta(10000, 1). Regarding infection dynamics, prior distributions were430

also speci�ed for the prevalence of status positives (also test positives in this431

scenario) on the �rst testing time p(S+
1 ) ∼ Beta(1, 1) (uniform on 0-1), the432

probability of becoming status positive τ1 ∼ Beta(1.5, 10) (percentiles: 5433

= 0.017, 50 = 0.109, 95 = 0.317), and the probability of remaining status434

positive τ2 ∼ Beta(10, 1.5) (percentiles: 5 = 0.683, 50 = 0.891, 95 = 0.983).435
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Model 2 - Perfect routine test and risk factors: in order to quantify436

the association between risk factors and the probability of becoming status437

positive if the test were close to perfect, the Bayesian model was run with438

the risk factors identi�ed as associated with seroconversion on the previous439

step and using the same priors for sensitivity, speci�city and τ2 as in Model440

1 (Se ∼ Beta(10000, 1), Sp ∼ Beta(10000, 1), τ2 ∼ Beta(10, 1.5)). The441

priors for risk factors were speci�ed as normal distributions on the logit442

scale. The prior for the intercept was θ1 ∼ N (−3, 1) (on the probability443

scale - percentiles: 5 = 0.01, 50 = 0.047, 95 = 0.205). This represented444

the prior probability of a new infection in a herd purchasing no animal and445

with a local seroprevalence of 0. The priors for the other model coe�cients446

were centred on 0 with a standard deviation of 2. On the logit scale, values447

of -4 (2 standard deviations in this case) correspond to probabilities close448

to 0 (logit(-4) = (0.018) and values of 4 to probabilities that are close to 1449

(logit(4) = (0.982).450

Model 3 - Imperfect routine test and risk factors: the objective451

of this model was to incorporate the uncertainty associated with test re-452

sults in both parameter estimation and in the prediction of the probabili-453

ties of infection. The priors for test sensitivity and speci�city were selected454

based on the ODR distributions for seronegatives and seropositives iden-455

ti�ed by the mixture model. The following prior distributions were used:456

Se ∼ Beta(5000, 260) (percentiles: 5 = 0.946, 50 = 0.951, 95 = 0.955) and457

Sp ∼ Beta(5000, 260). For the associations between risk factors and the458

probability of new infection, the same prior distributions as in Model 2 were459

used.460

Model 4 - Imperfect routine test, con�rmatory testing and risk fac-461

tors: the objective of this model was to assess the impact of con�rmatory462

testing. The same prior distributions as in scenario 3 were used. In this463

case however, every time a positive test result was recorded, a new con�r-464

matory test was randomly generated in the following month so that 85% of465

these tests were positive and 15% were negative. The con�rmatory test was466

assumed to have both a sensitivity and a speci�city close to 1.467

For each model, 4 chains were run in parallel. The �rst 5 000 MCMC468

iterations were discarded (burn-in). The model was run for 5 000 more469

iterations of which 1 in 20 was stored for analysis. This yielded 1 000 draws470
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Figure 4: Distribution of the test dates between 2014 and 2017 in 1687 herds
from Loire-Atlantique, France.

from the posterior distribution of each parameter. Convergence was assessed471

visually using traceplots. Each distribution was summarised with its median472

and 95% credibility interval.473

3 Results474

3.1 Test results475

There were 9725 available test results from 1687 herds. Most herds were476

tested in February and September (See Figure 4). Two normal distributions477

were �t to the ODR data using the R mixdist package (Figure 5). The distri-478

bution for seronegatives had a mean and standard deviation of 7.1 and 16.3479

respectively. The distribution for seropositives had a mean and standard480

deviation of 57 and 13 respectively. There were 58.6% and 41.4% of obser-481

vations in the seronegative and seropositive distributions respectively. ODR482

values above 35 (21% of ODR values) were categorised as test positive and483

ODR values below 35 were categorised as test negative. The sensitivity and484

the speci�city of the threshold value of 35 for the classi�cation of test results485

with respect to seropositivity were estimated using the �tted distributions486

as the gold standard. These estimated sensitivity and speci�city were 0.956487
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Figure 5: Distribution of the observed optical density ratios (histogramme)
and �tted mixture of normal distributions (red dashed curves) for the bulk
tank milk test results used in the analyses.

and 0.955 respectively. In the Bayesian models in which the latent status488

was seropositivity, the prior distributions for sensitivity and speci�city were489

centred on these values.490

3.2 Selection of risk factors491

Risk factors related to animal introductions and seroprevalence were evalu-492

ated with logistic models. The model outcome was a seroconversion event.493

A �rst step of the analysis was, for each variable, to identify the time in-494

terval that was the most predictive of an observed seroconversion. Figure 6495

presents the AIC values associated with each possible interval for the vari-496

ables ln(Number of animals introduced + 1) and local seroprevalence.497

For the animal introduction variables, for the same time interval, the498

AICs of the models of the untransformed number of animals were higher499

than the ones for the log transformed values (not shown). It can also be500

noted that considering longer intervals (further away from the diagonal) was501

usually better than considering short intervals (close to the diagonal). It502

may be that some herds never buy any animal while, on average, herds that503

buy once have already done it in the past. In this case, it is possible that504
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Figure 6: AIC values associated with logistic models of the association be-
tween 2 variables and the probability of seroconversion between 2 tests. The
variable evaluated on the left-hand side panel is the sum of the log(number
of animals introduced + 1) between lag1 and lag2. The variable evaluated
on the right-hand side panel is the max of the local seroprevalence between
lag1 and lag2.

the infection was introduced several times, while it is not possible to know505

which animal introduction was associated with herd seroconversion. This506

could explain the apparent cumulative e�ect of the number of introductions.507

The cells that are close to the diagonal are associated with short intervals.508

Considering one month intervals, the probability of infection was highest for509

introductions made 8 months from the month of seroconversion.510

Local seroprevalence was evaluated from data collected in 2 di�erent test-511

ing campaigns per year, as shown in Figure 4. For this reason, in the investi-512

gation of lagged relationships between local seroprevalence and the probabil-513

ity of seroconversion, the maximum local seroprevalence was computed, and514

not the sum as for the number of animals introduced. The strength of as-515

sociation between local seroprevalence and herd seroconversion was greatest516

for local seroprevalence 9 months prior to herd seroconversion.517

A �nal multivariable logistic model with an animal introduction variable518

and a local seroprevalence variable was constructed. In the choice of the519

time intervals to include in this model, the following elements were consid-520
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Table 2: Results of the �nal logistic model of the probability of seroconversion
between consecutive tests.

lag1 lag2 Estimate p-value

Intercept - - -1.96 7.99e-306
ln(Number animals introduced +1) 8 8 0.38 5.70e-10
local seroprevalence 9 9 4.59 3.39e-13

ered. First, the Bayesian model runs with a monthly time step. Aggregating521

data over several months would result in including the same variable sev-522

eral times. Secondly, historical data may sometimes be limited. Having the523

smallest possible value for the end of the interval could be preferable. For524

this reason the variables considered for the �nal model were the natural log-525

arithm of the number of animals introduced 8 months prior to the month of526

seroconversion as well as the local seroprevalence 9 months prior to the month527

of seroconversion. The results of this model are presented in Table 2. All528

variables were highly signi�cant. The model intercept was the probability of529

seroconversion in a herd introducing no animals and with local seroprevalence530

of 0 in each of the time intervals considered. The probability of seroconver-531

sion between 2 tests corresponding to this scenario was of 0.124. Buying 1,532

10 or 100 animals increased this estimated probability to 0.171, 0.866 and 1533

respectively. Buying no animals and observing a seroprevalence of 0.2 (pro-534

portion of seropositives in the dataset) was associated with a probability of535

seroconversion of 0.261.536

3.3 Bayesian models537

Running each of the 4 models for the 1687 herds with 3 years of data took on538

average 7 hours per model. In models 2 to 4, the candidate covariates were539

the natural logarithm of the number of animals introduced 8 months before540

status evaluation/prediction as well as the local seroprevalence 9 months541

prior. The 95% credibility interval for the estimated coe�cient associated542

with local seroprevalence included 0. This variable was therefore removed543

from the models and only cattle introductions were considered.544
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Table 3: Median (2.5%, 97.5%) of the parameter posterior distributions used
in the 4 Bayesian models evaluated. Model 1: Perfect routine test; Model
2: Perfect routine test and risk factors; Model 3: Imperfect routine test and
risk factors; Model 4: Imperfect routine test, con�rmatory testing and risk
factors.

Parameter Model 1 Model 2 Model 3 Model 4

Se BTM ODR 1 (0.999, 1) 1 (1, 1) 0.948 (0.942, 0.953) 0.949 (0.944, 0.955)
Se con�rmatory - - - 0.976 (0.973, 0.98)
Sp BTM ODR 1 (0.999, 1) 1 (0.999, 1) 0.932 (0.926, 0.938) 0.971 (0.964, 0.978)
Sp con�rmatory - - - 1 (1, 1)
τ1 0.029 (0.027, 0.032) - - -

τ2 0.965 (0.962, 0.967) 0.964 (0.961, 0.967) 0.994 (0.993, 0.996) 0.974 (0.97, 0.977)
θ1 (Intercept) - -3.631 (-3.718, -3.545) -4.803 (-4.985, -4.646) -3.825 (-3.94, -3.711)
θ2 - 0.589 (0.482, 0.684) 0.682 (0.522, 0.813) 0.665 (0.547, 0.776)

3.3.1 Model parameters545

Figure 7 and Table 3 show the distributions of model parameters for the 4546

models. Figure 8 shows the predicted probability of becoming status positive547

as a function of the number of animals introduced 9 months before status548

evaluation.549

In Models 1 and 2, the prior distributions put on sensitivity and speci-550

�city were very close to 1. With these models, the latent status corresponded551

to the test result. In e�ect, they modelled the monthly probabilities of tran-552

sition between BTM test negative and BTM test positive. In this case, the553

median (percentile 2.5 - percentile 97.5) probability of becoming status pos-554

itive between consecutive months was 0.029 (0.027 - 0.032). This represents555

a probability of becoming status positive over a 12 month period of 0.298556

(0.280 - 0.323). For status positive herds, the monthly probability of remain-557

ing positive was of 0.965 which represents a probability of still being status558

positive 12 months later of 0.652 (0.628-0.669). In model 2, a risk factor was559

incorporated into the estimation. The model intercept was much lower than560

the estimate from the logistic model estimated in the variable selection step.561

This was due to the di�erent time steps considered (1 month vs. half a year).562

On the other hand, the estimate for the log number of animals introduced563

was higher.564

In model 3, the prior distributions for test sensitivity and speci�city were565

centred on 0.95 based on the mixture of 2 normal distributions for seroneg-566
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Figure 7: Parameters posterior distributions for the 4 Bayesian models. Model 1: Perfect routine test;
Model 2: Perfect routine test and risk factors; Model 3: Imperfect routine test and risk factors; Model 4:
Imperfect routine test, con�rmatory testing and risk factors. Sensitivities and speci�cities close to 1 are
not shown to facilitate reading. The dashed lines correspond to the distributions of the con�rmatory tests.
Parameters related to status dynamics are τ1 (probability of becoming status positive between consecutive
months) and τ2 (probability of remaining status positive). τ1 was only estimated for the model without
risk factors (model 1). The parameters for the association between risk factors and the probability of
becoming status positive are θ1 and θ2. θ1 is the intercept of the logistic model and θ2 is the coe�cient
associated with the log of the number of animals introduced 8 months before status evaluation/prediction.
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atives and seropositives that described best the BTM ODR data (see Sec-567

tion 3.1). With this model, the latent status corresponded to seropositivity.568

This assumption allowed the e�ect of having an imperfect test on the estima-569

tion of the di�erent model parameters to be investigated. In this scenario,570

the posterior distribution for sensitivity was close to the prior, but the poste-571

rior for the speci�city was slightly lower. On the other hand, the distribution572

for τ2 was higher than when the test was considered perfect. This implies573

that the model identi�ed some test positives as false positives, but that the574

ones that retained a positive status remained positive for longer. Compared575

to Model 2, the probability of becoming status positive was lower in herds576

buying no animals (model intercept), and tended to increase more rapidly577

with the number of animals introduced (θ2), although for 100 animals intro-578

duced, the probability of becoming status positive was still lower than with579

the other models (Figure 8). Because of the imperfect sensitivity of routine580

testing, some herds that were seronegative at a test while seropositive at the581

previous or following tests were classi�ed as false negative by the model and582

thereby were not included in the estimation of τ1, which may have decreased583

the estimated strength of association between cattle introduction and new584

infection. However, the estimates produced by this should be more accurate.585

In model 4, con�rmatory testing was added, with a testing procedure as-586

sumed to have perfect sensitivity and speci�city for the detection of farms587

with infected animals. This resulted in several di�erences with model 3,588

which illustrate the interplay between data and prior information. The added589

con�rmatory negative results often contradicted the data because, they were590

generally followed by a positive routine test. This had the following conse-591

quences. The posterior distribution for the sensitivity of con�rmatory testing592

was lower than its prior distribution, indicating that herds negative to con-593

�rmatory testing were classi�ed as false negatives more often than suggested594

by the priors. The fact that the estimated value for the speci�city of BTM595

testing was higher than in Model 3 shows that herds positive to routine test-596

ing were considered to be true positives slightly more often. The fact that597

the estimated value for τ2 was lower than in Model 3 shows that status posi-598

tive herds tended to clear infection more quickly, which allowed a more rapid599

status change between routine and con�rmatory testing. Because Model 4600

resulted in more frequent changes in status, the coe�cients for the associ-601

ation between cattle introduction and new infections (Figure 8) were closer602

between Model 4 and Model 2 than between Model 4 and Model 3.603
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Figure 8: Predicted probability of new infection as a function of the num-
ber of animals introduced 8 months before the month of interest for the
Bayesian models 2 to 4. Model 2: Perfect routine test and risk factors;
Model 3: Imperfect routine test and risk factors; Model 4: Imperfect routine
test, con�rmatory testing and risk factors. The lines represent the median
predicted values. The shaded areas represent the 95% credibility intervals.

25

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 22, 2020. . https://doi.org/10.1101/2020.07.10.197426doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197426
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.3.2 Predicted probabilities of infection604

Figure 9 shows the distributions of herd-level probabilities of infection pre-605

dicted by the 4 Bayesian models. These probability distributions are bimodal606

for all models. The left-hand side corresponds to herds that were predicted607

status negative on the month before the month of prediction. These are608

associated to becoming status positive, i.e. τ1. The right-hand side of the609

distributions corresponds to herds that were predicted status positive on the610

month before the month of prediction. These are associated to remaining611

status positive, i.e. τ2. For models 3 and 4, which incorporate both risk612

factors and test uncertainty, the modes are closer to 0 and 1 than for the613

other 2 models. For Model 4, there is a third mode between 0.4 and 0.5.614

This mode was associated with con�rmatory testing.615

Figure 10 shows the distributions of the predicted probability of being616

status positive for 4 herds. It can be seen that herds that were consistently617

negative (positive) to the test had extremely low (high) probabilities of being618

status positive. Accounting for the number of animals introduced increased619

the probability of infection in the herds that were test negative.620

4 Discussion621

This article describes a statistical framework for the prediction of an infection622

related status from longitudinal data generated by CPs against infectious623

diseases of farm animals. The statistical model developed estimates a herd624

level probability of being latent status positive on a speci�c month, based625

on input data that can vary in terms of the types of test used, frequency626

of testing and risk factor data. This is achieved by modelling the latent627

status with the same discrete time step, regardless of the frequency with628

which input data are available, and by modelling changes in the latent status629

between consecutive time steps. This model therefore ful�ls one of our main630

objectives which was to be able to integrate heterogeneous information into631

the estimation. However, in order to be able to compare the output of this632

model run on data from di�erent CPs, the de�nition of the latent status633

should be the same.634

In this model, the latent status is mostly de�ned by the prior distribu-635

tions put on the di�erent model parameters. In setting the prior distributions636

there are two issues: setting the distribution's central value (mean, median637

26

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 22, 2020. . https://doi.org/10.1101/2020.07.10.197426doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197426
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

2.5

5.0

7.5

0.00 0.25 0.50 0.75 1.00
Predicted probability of status positive

de
ns

ity

Model

Model 1

Model 2

Model 3

Model 4

Figure 9: Distributions of the predicted probabilities of being status positive
for all herds with the 4 Bayesian models evaluated. Model 1: Perfect routine
test; Model 2: Perfect routine test and risk factors; Model 3: Imperfect
routine test and risk factors; Model 4: Imperfect routine test, con�rmatory
testing and risk factors.
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Figure 10: Distribution of predicted probabilities of being status positive on
the month of prediction for 4 herds with the 4 models compared. Model 1:
Perfect routine test; Model 2: Perfect routine test and risk factors; Model 3:
Imperfect routine test and risk factors; Model 4: Imperfect routine test, con-
�rmatory testing and risk factors. Herd 1 was test negative for 6 consecutive
tests, introduced no animal. Herd 2 was test negative for 6 consecutive tests,
introduced animals regularly (196 associated with the month of prediction).
Herd 3 was test negative on the �rst 5 tests and test positive on the month
of prediction, introduced animals regularly (3 introductions associated with
the month of prediction). Herd 4 was test negative on the �rst 2 tests and
test positive on the last 4 tests, introduced animals regularly.
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. . . ) and setting the distribution width. Choosing the wrong central value,638

i.e. the prior distribution does not include the true parameter value, can lead639

to systematic error (bias) or absence of convergence. This problem will be640

more important as prior distributions become narrower. Setting prior distri-641

butions that are too wide can lead to a lack of convergence, when multiple642

combinations of parameter values are compatible with the data. This was a643

problem in initial modelling of the BVDV data (not shown). Putting narrow644

prior distributions on test sensitivity and test speci�city allowed the model645

to converge. These narrow distributions imply very strong hypotheses on646

test characteristics.647

The de�nition of prior distributions for test characteristics that re�ect648

the latent status of interest is challenging (Duncan et al., 2016). This was649

apparent in the application to infection by the BVDV we presented. For650

the trade of animals from herds that are free from infection by the BVDV,651

the latent status of interest was the presence of at least one PI animal in652

the herd. The test data available to estimate the probability of this event653

were measures of bulk tank milk antibody levels which were used to de�ne654

seropositivity as a binary event. Although milk antibody level is associated655

with the herd prevalence of antibody positive cows (Beaudeau et al., 2001),656

seropositive cows can remain long after all the PIs have been removed from657

a herd. Furthermore, vaccination induces an antibody response which may658

result in vaccinated herds being positive to serological testing regardless of659

PI animal presence (Raue et al., 2011; Booth et al., 2013). Therefore, the660

speci�city of BTM seropositivity, i.e. the probability for herds with no PI661

animals to be test negative, is less than 1. More importantly, this speci�city662

depends on the context; i.e. on the CP. PI animals can be identi�ed and663

removed more or less quickly depending on the CP, the proportion of herds664

vaccinating and the reasons for starting vaccination can di�er between CPs.665

Test sensitivity can also be imperfect. Continuing with the example of bulk666

tank milk testing, contacts between PI animals present on the farm and the667

lactating herd may be infrequent, which would decrease sensitivity. In this668

case, the sensitivity of the testing procedure is the sensitivity of the test669

for the detection of seroconversion in a group of animals mulitplied by the670

probability that the tested group has seroconverted if there is a PI animal in671

the herd. The probability of contact between PI animals and the lactating672

herd depends on how herds are organised, which could vary between CPs.673

This problem is alleviated when newborn calves are tested because the group674

of animals tested is the group in which the infectious animals are most likely675
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to be present. Furthermore, with BTM testing, the contribution of each676

seropositive cow to the BTM decreases as herd size increases which can result677

in di�erences in BTM test sensitivity associated with di�erent herd sizes678

between CPs.679

The e�ects of using di�erent prior distributions for test characteristics680

on latent status de�nition, parameter estimation and probability prediction681

were evaluated. In models 1 and 2, the dichotomised BTM antibody test682

results were modelled assuming perfect sensitivity and perfect speci�city.683

With these assumptions, the latent status was the dichotomised test results.684

In Model 3, the BTM test was assumed to have both a sensitivity and a speci-685

�city concentrated around 95%, based on the normal distributions associated686

with seronegativity and seropositivity identi�ed by a mixture model. The la-687

tent status in Model 3 can therefore be described as seropositivity. Because688

overall the probability of changing status was small, assuming an imperfect689

sensitivity lead to isolated negative test results in sequences of mostly pos-690

itive test results to be considered false negatives, as shown by the increase691

in the estimated value for τ2 between Model 2 and Model 3. This illustrates692

that in addition to test characteristics, status dynamics will determine the693

latent status within herds. Model 4 was constructed to evaluate the impact694

of incorporating con�rmatory testing into the model. In CPs, herds that test695

positive are usually re-tested in order to rule out a false positive test, and696

to identify infected animals if needed. The testing procedure used in con-697

�rmatory testing usually has a high sensitivity and a higher speci�city than698

routine testing in relation to the gold standard. When incorporated into the699

model, this high quality information, in conjunction with wider prior distri-700

butions on routine testing speci�city, should allow the posterior distribution701

of the speci�city of routine testing to be revised towards the gold standard.702

Indeed, if a con�rmatory test comes back negative, then the corresponding703

latent status will become negative with high probability. Given the low prob-704

ability of becoming status negative between consecutive months, the latent705

status on the month of routine testing has an increased probability of be-706

ing negative, leading to a decrease in the speci�city of routine testing. This707

could not be adequately demonstrated in Model 4, because simulating test708

results at random was often not consistent with patterns of test results in709

individual herds. However, this con�rmed the importance of status dynamics710

in estimating the latent status.711

Status dynamics contributed to the de�nition of the latent status in sev-712

eral ways. Negative test results interspersed with sequences of positive test713

30

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 22, 2020. . https://doi.org/10.1101/2020.07.10.197426doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197426
http://creativecommons.org/licenses/by-nc-nd/4.0/


results will be classi�ed as latent status positive (i.e. as false negatives) more714

often as test sensitivity decreases and τ2 increases. Positive test results in-715

terspersed with sequences of negative test results will be classi�ed as latent716

status negative (i.e. as false positives) with increased frequency as test speci-717

�city and τ1 each decrease. With a perfect test (sensitivity and speci�city718

equal to 1), the model can learn the values of τ1 and τ2 from the data, and719

the prior distributions put on these parameters can be uninformative. With720

decreasing values for test sensitivity and speci�city, the information provided721

through the prior distributions put on τ1 and τ2 becomes increasingly impor-722

tant. The informative value of τ1 and τ2 will increase as the probability of723

transition between latent status negative and latent status positive decrease,724

i.e. when τ1 is small and τ2 is high.725

When data on risk factors of new infection are available, the τ1 parameter726

is modelled as a function of these risk factors using logistic regression. In such727

a case, prior distributions are put on the parameters of the logistic regression728

and not on the the τ1 parameter. In the application that we presented, we729

used a prior distribution corresponding to a low probability of new infection730

in the reference category (intercept: herds which introduced no animals) and731

we centred the prior distribution for the association with cattle introductions732

on a hypothesis of no association (mean = 0 on the logit scale). This allowed733

the model to estimate the association between the risk factor and the latent734

status from historical data and to use the estimated association to predict735

probabilities of being latent status positive on the month of prediction. As736

expected, the prior distributions put on test characteristics had an impact737

on the parameter estimates. In Model 3, the model intercept was lower and738

the estimated association between becoming latent status positive and cattle739

introduction was higher than in the other models. The most likely explana-740

tion for this is that Model 3 allowed the highest level of discrepancy between741

dichotomised test result and latent status, while assuming a low probability742

of changing status between months. This resulted in negative test results743

in herds that were regularly positive to be classi�ed as latent status positive744

(false negatives, associated with lower test sensitivity, see Table 3) thereby re-745

moving opportunities for new infections in herds that were regularly positive746

while also buying animals. This would imply that the estimated association747

from model 3 is more closely associated with new infections than estimates748

from the other models because herds that are regularly test positive have749

less weight in the estimation. It would also have been possible to base the750

prior distributions for the model coe�cients on published literature. Unfor-751
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tunately, estimates of the strengths of association between risk factors and752

the probability of new infection are not readily available from the published753

literature or are hard to compare between studies (van Roon et al., 2020a).754

However, estimates from the literature could allow the prior distributions to755

be bounded within reasonable ranges.756

Because the model takes a lot of time to run, the variables included in757

the logistic regression were �rst identi�ed with logistic models estimated by758

maximum likelihood. This con�rmed the importance of animal introduction759

and neighbourhood contacts in new infections (Qi et al., 2019). However, in760

the Bayesian models, the 95% credibility for the association between local761

seroprevalence and new infection included 0 and this variable was therefore762

not included. The reason for this was not elucidated in this work. Other risk763

factors such as herd size, participation in shows or markets, the practice of764

common grazing have shown a consistent association with the probability of765

new infection by the BVDV (van Roon et al., 2020a). These variables were766

not included in our model because the corresponding data were not available.767

One advantage of our approach is the possibility to choose candidate risk768

factors to include in the prediction of infection based on the data available in769

a given CP. The associations between the selected putative risk factors and770

the probability of new infection can be estimated from these data.771

Given the reasonably good performance of tests for the detection of BVDV772

infection, the main advantage of incorporating these risk factors was not to773

complement the test results on a month a test was performed, but rather to774

enhance the timeliness of detection. Risk factors that are associated with775

new infection will increase the predicted probability of infection regardless776

of the availability of a test result. Therefore, when testing is not frequent,777

infected herds could be detected more quickly if risk factors of infection are778

recorded frequently. If the available data on risk factors of new infection779

captured all the possible routes of new infection, it would be possible to780

perform tests more frequently in herds that have a higher probability of781

infection as predicted by our model. In other words, our model could be782

used for risk-based surveillance (Cameron, 2012).783

In the CP from which the current data were used, herds are tested twice784

a year. This could lead to a long delay between the birth of PI calves and785

their detection through bulk tank milk testing. We addressed this problem786

of delayed detection by proposing a method for the investigation of lagged787

relationships between risk factor occurrence and new infections, and by in-788

cluding lagged risk factor occurrences in the prediction of the probability of789
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infection. In our dataset, herds purchasing cattle were more likely to have790

seroconverted 8 months after the introduction. In the Bayesian model, cattle791

introduction was modelled as a�ecting the probability of becoming status792

positive 8 months after the introduction. It can be argued that infection is793

present but not detected during this period, as the expression delayed detec-794

tion suggests, and that the probability of infection should increase as soon795

as risk factor occurrence is recorded. Modelling this phenomenon would be796

possible by decreasing the test sensitivity for a period corresponding to the797

lag used in the current version of the model. This would imply that for this798

duration, any negative BTM test result would not provide any information799

about the true status regarding infection and that the herd would have an800

increased predicted probability of infection. This could be incorporated in801

future versions of the model.802

There are several questions related to this modelling framework that803

would require further work. The model outputs are distributions of herd804

level probabilities of infection. De�ning herds that are free from infection805

from these distributions will require decision rules to be developed based on806

distribution summaries (likely a percentile) and cut-o� values. It would also807

be possible to model the probability of remaining infected between consecu-808

tive tests (τ2) as a function of the control measures put in place in infected809

herds. Another area that requires further investigations is the evaluation810

of the modelling framework against a simulated gold standard to determine811

whether it provides an added value compared to simpler methods. The avail-812

ability of the model code as a Github repository allows interested users to813

improve or suggest improvements to our modelling framework.814
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