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2 Abstract

27 For many infectious diseases of farm animals, there exist collective
28 control programmes (CPs) that rely on the application of diagnostic
20 testing at regular time intervals for the identification of infected an-
30 imals or herds. The diversity of these CPs complicates the trade of
31 animals between regions or countries because the definition of freedom
32 from infection differs from one CP to another. In this paper, we de-
33 scribe a statistical model for the prediction of herd level probabilities
34 of infection from longitudinal data collected as part of CPs against
35 infectious diseases of cattle. The model was applied to data collected
36 as part of a CP against infections by the bovine viral diarrhoea virus
37 (BVDYV) in Loire-Atlantique, France. The model represents infection
38 as a herd latent status with a monthly dynamics. This latent status
39 determines test results through test sensitivity and test specificity. The
40 probability of becoming status positive between consecutive months is
2 modelled as a function of risk factors (when available) using logistic
a2 regression. Modelling is performed in a Bayesian framework. Prior
43 distributions need to be provided for the sensitivities and specificities
as of the different tests used, for the probability of remaining status posi-
a5 tive between months as well as for the probability of becoming positive
46 between months. When risk factors are available, prior distributions
a7 need to be provided for the coefficients of the logistic regression in
a8 place of the prior for the probability of becoming positive. From these
a9 prior distributions and from the longitudinal data, the model returns
50 posterior probability distributions for being status positive in all herds
51 on the current months. Data from the previous months are used for
52 parameter estimation. The impact of using different prior distributions
53 and model settings on parameter estimation was evaluated using the
54 data. The main advantage of this model is its ability to predict a prob-
55 ability of being status positive on a month from inputs that can vary
56 in terms of nature of test, frequency of testing and risk factor availabil-
57 ity. The main challenge in applying the model to the BVDV CP data
58 was in identifying prior distributions, especially for test characteristics,
59 that corresponded to the latent status of interest, i.e. herds with at
60 least one persistently infected (PI) animal. The model is available on
61 Github as an R package (https://github.com/AurMad/STOCfree).
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- 1 Introduction

63 For many infectious diseases of farm animals, there exist collective control
ea programmes that rely the application of diagnostic testing at regular time
es intervals for the identification of infected animals or herds. In cattle, such dis-
s eases notably include infection by the bovine viral diarrhoea virus (BVDV)
e7 or by Mycobacterium avium subspecies paratuberculosis (MAP). These con-
es trol programmes (CP)s are extremely diverse. Their objective can range
eo from decreasing the prevalence of infection to eradication. Participation in
70 the CP can be voluntary or compulsory. The qualification of herds regarding
7 infection can be based on a wide variety of testing strategies in terms of the
72 nature of the tests used (identification of antibodies vs. identification of the
73 agent), the groups of animals tested (e.g. breeding herd vs. young animals),
7o number of animals tested, frequency of testing (once to several times a year,
75 every calf born...). Even within a single CP, surveillance modalities may
76 evolve over time. Such differences in CPs were described by van Roon et al.
77 (2020Db) for programmes targeting BVDV infections and by Whittington et al.
s (2019) for programmes against MAP.

79 Differences in surveillance modalities can be problematic when purchas-
so ing animals from areas with different CPs because the free status assigned
s1 to animals or herds might not be equivalent between CPs. A standardised
s2 method for both describing surveillance programmes and estimating confi-
ss dence of freedom from surveillance data would be useful when trading animals
ga across countries or regions. While inputs can vary between programmes, the
gs output needs to be comparable across programmes. This is called output-
ss based surveillance (Cameron, 2012). Probabilities measure both the chance
sz of an event and the uncertainty around its presence/occurrence. If well de-
ss signed, a methodology to estimate the probability of freedom from infection
g0 would meet the requirements of both providing a confidence of freedom from
o infection as well as of being comparable whatever the context.

01 Currently, the only quantitative method used to substantiate freedom
o2 from infection to trading partners is the scenario tree method (Martin et al.,
oa 2007). The method is applied to situations where there is a surveillance
oa programme in place, with no animals or herds confirmed positive on testing.
os Scenario trees are based on the premise that it is impossible to prove that
o6 a disease is totally absent from a territory unless the entire population is
oz tested with a perfect test. What is estimated with the scenario tree method
s is the probability that the infection would be detected in the population if it


https://doi.org/10.1101/2020.07.10.197426
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.10.197426. this version posted July 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

90 were present at a chosen design prevalence. The output from this approach
wo s the probability that the infection prevalence is not higher than the design
w1 prevalence given the negative test results (Cameron, 2012). Therefore, this
102 method is well suited for those countries that are free from infection and that
103 want to quantify this probability of freedom from infection for the benefit of
ws trading partners (Norstrom et al., 2014).

105 The scenario tree method is not adapted to countries or regions where
wes there is a CP against an infectious disease which is still present. In such
w7 a context, only herds that have an estimated probability of freedom from
s infection that is deemed sufficiently high or, equivalently, a probability of
100 infection that is deemed sufficiently low, would be safe to trade with. Identi-
uo fying these herds involves estimating a probability of infection for each herd
w1 in the CP and then defining a decision rule to categorise herds as uninfected
12 or infected based on these estimated probabilities.

113 In this paper, we propose a method to estimate herd level probabilities
ua  of infection from heterogeneous longitudinal data generated by CPs. The
us  method predicts herd-month level probabilities of being latent status positive
ue from longitudinal data collected in CPs. The input data are test results, and
1z associated risk factors when available. Our main objective is to describe this
us modelling framework by showing how surveillance data are related to the
ue  probabilities of infection (strictly speaking, probabilities of being latent status
120 positive) and by providing details regarding the statistical assumptions that
121 are made. A secondary objective is to estimate these probabilities of being
122 latent status positive, using different definitions for the latent status, from
123 surveillance data collected as part of a CP against the infection by the BVDV
122 in Loire-Atlantique, France. The challenges of defining prior distributions
125 and the implications of using different prior distributions are discussed. R
16 functions to perform the analyses described in this paper are gathered in an
27 R package which is available from GitHub (https://github.com/AurMad/
128 STOCfree).
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» 2 Materials and methods

1 2.1 Description of the model
11 2.1.1 Conceptual representation of surveillance programmes

132 Surveillance programmes against infectious diseases can be seen as imper-
133 fect repeated measures of a true status regarding infection. In veterinary
132 epidemiology, the issue of imperfect testing has traditionally been addressed
135 using latent class models. With this family of methods, the true status re-
s garding infection is modelled as an unobserved quantity which is linked to
137 test results through test sensitivity and specificity. Most of the literature on
138 the subject is on estimating both test characteristics and infection prevalence
19 (Collins & Huynh, 2014). For the estimations to work, the same tests should
1o be used in different populations (Hui & Walter, 1980), the test characteristics
11 should be the same among populations and test results should be condition-
12 ally independent given the infection status (Toft et al., 2005; Johnson et al.,
13 2009). Latent class models can also be used to estimate associations between
us infection, defined as the latent class, and risk factors when the test used is
us imperfect (Fernandes et al., 2019). In the study by Fernandes et al. (2019),
us the latent class was defined using a single test, through the prior distribu-
wr tions put on sensitivity and specificity. When using latent class models with
us longitudinal data, the dependence between successive test results in the same
o herds must be accounted for. In the context of estimating test characteristics
10 and infection prevalence from 2 tests in a single population from longitudi-
151 nal data, Nusinovici et al. (2015) proposed a Bayesian latent class model
152 which incorporated 2 parameters for new infection and infection elimination.
153 The model we describe below combines these different aspects of latent class
s« modelling into a single model.

155 We propose to use a class of models called Hidden Markov Models (HMM,
16 see Zucchini et al. (2017)). Using surveillance programmes for infectious dis-
157 eases as an example, the principles of HMMs can be described as follows:
158 the latent status (class) of interest is a herd status regarding infection. This
150 status is evaluated at regular time intervals: HMMs are discrete time mod-
1o els. The status at a given time only depends on the status at the previous
161 time (Markovian property). The status of interest is not directly observed,
12 however, there exists some quantity (such as test results) whose distribu-
163 tion depends on the unobserved status. HMMs have been used for decades
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16 in speech recognition (Rabiner, 1989) and other areas. They have also been
s used for epidemiological surveillance (Le Strat & Carrat, 1999), although not
16 with longitudinal data from multiple epidemiological units such as herds. The
16z model we developed is therefore a latent class model that takes into account
168 the time dynamics in the latent status. The probability of new infection
160 between consecutive time steps is modelled as a function of risk factors.

170 Figure 1 shows how surveillance programmes are represented in the model
171 as a succession of discrete time steps. The focus of this model is a latent
12 status evaluated at the herd-month level. This latent status is not directly
173 observed but inferred from its causes and consequences incorporated as data.
17 The consequences are the test results. Test results do not have to be available
175 at every time step for the model to work. The causes of infection are risk
e factors of infection. In the application presented below, the latent status
17z will be either herd seropositivity or presence of a PI animal in the herd,
s depending on the testing scheme as well as on the prior distributions put
170 on the characteristics of the tests used. The model estimates this latent
180 status monthly, and predicts it for the last month of data. These herd-
11 month latent statuses will be estimated/predicted from test results (BTM
122 ELISA testing or confirmatory testing) and risk factors (cattle introductions
183 or local seroprevalence) recorded in each herd.

1 2.1.2 Modelling framework, inputs and outputs

185 The model is designed to use longitudinal data collected as part of surveil-
16 lance programmes against infectious diseases. In such programmes, each herd
187 level status is re-evaluated when new data (most commonly test results, but
s may also be data related to risk factors) are available. The model mimics
180 this situation by predicting the probability of a positive status for all herds
10 in the CP on the last month of available data. Data from all participating
101 herds up to the month of prediction are used as historical data for parameter
102 estimation (Figure 1).

103 The estimation and prediction are performed within a Bayesian frame-
s work using Markov Chain Monte Carlo (MCMC) in the JAGS computer pro-
s gramme (Plummer, 2017). The model encodes the relationships between all
106 the variables of interest in a single model. Each variable is modelled as drawn
w7 from a statistical distribution. The estimation requires prior distributions for
108 all the parameters in the model. These priors are a way to incorporate either
100 existing knowledge or hypotheses in the estimation. For example, we may
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Figure 1: Conceptual representation of the implementation of a surveillance
programme within a herd. The focus of the model is the latent status regard-
ing infection, which is modelled at the herd-month level. This status partly
depends on risk factors and determines test results. In this diagram, risk
factors are represented as green dots when present and available test results
as blue shaded squares. The model predicts a probability of infection for the
most recent month in the surveillance programme using all the data collected
for the estimation of model parameters.
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200 know that the prevalence of herds infected with BVDYV in our CP is probably
201 lower than 20%, certainly lower than 30% and greater than 5%. Such con-
202 straints can be specified with a Beta distribution. The Beta distribution is
203 bounded between 0 and 1, with 2 parameters a and [ determining its shape.
200 With the constraints specified above, we could use as a prior distribution a
205 Beta(a = 15,8 = 100)'. If we do not know anything about this infection
200 prevalence (which is rare), we could use a Beta(a = 1, 8 = 1) prior, which is
207 uniform between 0 and 1. From the model specification, the prior distribu-
208 tions and the observed data, the MCMC algorithm draws samples from the
200 Pposterior distributions of all the variables in the model. These posterior dis-
210 tributions are the probability distributions for the model parameters given
2 the data and the prior distributions. MCMC methods are stochastic and
212 iterative. Each iteration is a set of samples from the joint posterior distri-
213 butions of all variables in the model. The algorithm is designed to reach the
214 target joint posterior distribution, but at any moment, there is no guarantee
215 that it has done. To overcome this difficulty, several independent instances
216 of the algorithm (i.e. several chains) are run in parallel. For a variable, if
217 all the MCMC draws from the different chains have the same distribution, it
218 can be concluded that the algorithm has reached the posterior distribution.
210 In this case, it is said that the model has converged.

220 The focus of our model is the monthly latent status of each herd. This
221 latent status depends on the data on occurrence of risk factors and it affects
222 test results. The data used by the model are the test results and risk factors.
223 At each iteration of the MCMC algorithm, given the data and priors, a herd
24 status (0 or 1) and the coefficients for the associations between risk factors,
225 latent status and test results are drawn from their posterior distribution.

226 In the next 3 sections, the parameters for which prior distributions are
227 required, i.e. test characteristics, status dynamics and risk factor parameters,
28 are described. The outputs of Bayesian models are posterior distributions for
220 all model parameters. Specifically, in our model, the quantities of interest
230 are the herd level probabilities of being latent status positive on the last
231 test month in the dataset as well as test sensitivity, test specificity, infection
232 dynamic parameters and parameters for the strengths of association between
233 risk factors and the probability of new infection. This is described in the

1The Beta(a = 15,3 = 100) distribution has a mean of 0.13 and a standard deviation
of 0.03. In R, it can be plotted using the following instructions curve(dbeta(x, 15,
100))
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Figure 2: Modelling of infection dynamics. The diagram shows hypothetical
latent statuses (0 for negative; 1 for positive) as a function of time in month,
with examples of all possible transitions. 7 = p(S;) is the probability
of being status positive at the first point in time, 7, = p(S;|S, ;) is the
probability of becoming status positive and 7, = p(S;7|S;" ;) is the probability
of remaining status positive.

23 corresponding sections.

235 2.1.3 Latent status dynamics

23 Between test events, uninfected herds can become infected and infected herds
237 can clear the infection. The model represents the probability of having a
238 positive status at each time step as a function of the status at the previous
230 time step (Figure 2). For the first time step when herd status is assigned,
200 there is no previous status against which to evaluate change. From the second
221 time step when herd status is assigned, and onwards, herds that were status
222 negative on the previous time step have a certain probability of becoming
a3 status positive and herds that were status positive have a certain probability
224 Of remaining status positive.

245 These assumptions can be summarised with the following set of equa-
26 tions?. The status on the first time step (S;) is a Bernoulli event with a
227 Beta prior on its probability of occurrence:

ST ~ Bernoulli(p(Sy)) (1)

2Statuses are estimated /predicted at the herd-month level. Herd is omitted from the
notation to facilitate reading. S; should be read as S;“t where h represents the herd.
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248

p(Sy) ~ Beta(ria, mip) (2)
240 From the second time step when herd status is assigned, and onwards,
250 @ positive status is also a Bernoulli event (S;7) with a probability of occur-
251 rence that depends on the status at the previous time step as well as on
252 the probability of becoming status positive and the probability of remaining
253 status positive. In this case, the probability of becoming status positive is
2sa 71 = p(S;T]S;_;) and the probability of remaining positive is 7, = p(S;7|S;" ;).

S;" ~ Bernoulli(p(S;H))
p(Sf) = (1 =S+ 557

(3
(
(
(

4
3
6

255

7 ~ Beta(Tiq, T1p)
257

)
)
)
Ty ~ Beta(Taq, Top) )

258 Therefore, the status dynamics can be completely described by p(S7"), 7
250 and T2.

260 2.1.4 Incorporation of information on risk factors for new infec-
261 tion

262 'The probability of new infection is not the same across herds. For example,
263 herds that introduce a lot of animals or are in areas where infection preva-
26 lence is high could be at increased risk of new infection (Qi et al., 2019).
265 Furthermore, the association between a given risk factor and the probability
266 Of new infection could be CP dependent. For example, the probability of
267 introducing infection through animal introductions will depend on the infec-
268 tion prevalence in the population from which animals are introduced. As a
260 consequence, estimates for these associations (as presented in the literature)
270 could provide an indication about their order of magnitude, but their preci-
o sion may be limited. On the other hand, the CPs which are of interest in this
o2 work usually generate large amounts of testing data which could be used to
273 estimate the strengths of association between risk factors and new infections
27 within a given CP. The variables that are associated with the probability of
275 new infection could increase the sensitivity and timeliness of detection.

276 When risk factors for new infection are available, the model incorporates
277 this information by modelling 77 as a function of these risk factors through
278 logistic regression, instead of the prior distribution for 7.

10
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Figure 3: Relation of the model latent status to test result. Sensitivity is the
probability of a positive test result in a status positive herd. Specificity is
the probability of a negative test result in a status negative herd.

lOgZ.t(Tlht) = Xhte (7)

279 where X, is a matrix of predictors for herd A at time ¢ and 6 is a vector
280 of coefficients. Normal priors are used for the coefficients of the logistic
281 Tegression.

0; ~ Normal(u;, ;) (8)

22 2.1.5 Test characteristics

283 'The model allows the inclusion of several test types but for the sake of clarity,
28¢ - we show the model principles for only one test type. These principles can be
285 extended to several tests by specifying prior distributions for all tests.

286 Tests are modelled as imperfect measures of the latent status (Figure 3).
2e7 Test sensitivity is the probability of a positive test result given a positive
28 latent status (Se = p(T1|S™), refers to true positives) and test specificity
280 1S the probability of a negative test result given a negative latent status
200 (Sp=p(T~|S7), refers to true negatives).

201 Test result at time ¢ is modelled as a Bernoulli event with probability
202 p(T;") of being positive.

T ~ Bernoulli(p(T;")) 9)

11
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203 The relation between the probability of testing positive, the probability
204 Of a positive status, test sensitivity and test specificity is the following:

p(T}) = 8 Se+ (1= 57)(1 - Sp) (10)

205 Information or hypotheses regarding test characteristics are incorporated
206 in the model as priors modelled by Beta distributions:

Se ~ Beta(Se,, Sep) (11)
297

Sp ~ Beta(Spa, Spy) (12)
208 It is important to note that the prior distributions used for sensitivity

200 and specificity will determine what the latent status is. As an example, we
s0 consider the detection of BVDV infection with a test that detects BVDV
;1 specific antibodies in bulk tank milk. BVDYV infection is associated with a
32 long lasting antibody production. There can be cows that are seropositive
303 long after the last PI animal has left the herd. In this situation, using a value
s04 Of 1 for specificity will define the latent status as any herd with antibody
;05 positive cows. However, the herd-level specificity of the test, defined as the
36 probability of a negative test result in a herd with no PI animals, is lower
sz than the animal-level specificity defined as the probability of a negative test
308 result in a sample from an non-PI animal. The specificity of interest, i.e. the
300 detection of farms with PI animals, will depend on the proportion of antibody
a0 positive lactating dairy herds that are in farms with PI animals. In turn, this
s will depend on many factors that are CP dependent such as the prevalence of
;12 infection or the proportion of farms that use vaccination against the BVDV.
a3 With antibody testing alone, it is therefore difficult to define accurate prior
s distributions for sensitivity and specificity for the detection of farms with PI
a5 animals.

316 However, it is possible to align the meaning of the latent status with the
a1z status of interest. In most CPs, positive routine tests will be followed by con-
sis firmatory testing. The objective of routine testing is to detect any potentially
a0 infected herd. The tests used for routine testing should be sensitive. The
120 oObjective of confirmatory testing is to identify truly infected herds among
s21 herds positive in routine testing. The testing procedure used for confirma-
322 tory testing should be both specific and sensitive. With our model, if these
123 conditions are met and if prior distributions that reflect these hypotheses are
324 used, the posterior distributions for the characteristics of both testing phases

12
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325 should be more accurate. A useful property of HMMs is that accounting for
126 the status dynamics makes the results of tests performed on different months
327 in the same herd conditionally independent, because the conditional time de-
128 pendence between statuses is modelled with the dynamics part of the model.
120 For example, if a herd tests positive during routine testing, it will have a
a30  higher than average prior probability of infection in subsequent confirmatory
i1 testing. As a further consequence of this, the posterior distribution for the
332 specificity of routine testing will depend on the proportion of herds that are
;33 confirmed positive in confirmatory testing.

;3¢ 2.1.6 Prediction of a probability of infection

335 In explaining how predictions are performed we use the following notation:
a6 1) is the predicted value for vy, B is the estimated value for 5. The equation
s = B.z means that the predicted value for y is equal to (data) times the
a8 estimated value for 3.

339 The model predicts herd-level probabilities of infection on the last month
a0 in the data mimicking regular re-evaluation as new data come in. If there
a1 1S no test result available on this month, the predicted probability of being
w2 status positive (called p(S;™)) is the predicted status on the previous month
a3 times 7y, if the herd was predicted status negative or times 75 if the herd was
s predicted status positive (Table 1). This can be written as:

p(S’;L*) = p(gj’gzila i, T2) = (1 — gttl)'%lt + 3;1'7:2 (13)

345 where:
71 = logit 1 (X,0) (14)
346 If a test result was available, the prediction must combine information

a7 {rom the test as well as previous information. The way to estimate this pre-
ss  dicted probability from p(S; ) and test results can be derived from Table 1.
a0 The predicted probability of being status positive can be computed as:

~+ + ~+* o + Se.p(5+*)
p(STITS7) = I smmiasa Gy T

(15)
e (1=Se).(1-p(S;))
1-7 )'(1—56)-(1—p(5£”))+572-(1—p(5’f*))

3Here 71; is predicted from herd-month specific risk factors while 75 is the same for all
herds and estimated from historical data.
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Table 1: Probability of test result by herd status. Cells on the first row are
test positive herds with true positives on the left-hand side and false positives
on the right-hand side. Cells on the second row are test negative herds with
false negatives on the left-hand side and true negatives on the right-hand

side.
Herdstatus;
+ -
w o+ Sep(S)  (1-5p)(1—p(S))
& - (1=95e)p(S7)  Sp(1—=p(S))
350 where T;" = 1 when the test at time ¢ is positive, 7;" = 0 when it is

351 negative

2 2.2 Application of the model to a control programme
353 for BVDYV infection in cattle

e 2.2.1 Data

355 The model was evaluated on data collected for the surveillance of BVDV
16 infection in cattle in Loire-Atlantique, France. Data were available from
357 1687 dairy herds between the beginning of 2010 and the end of 2016. Under
158 the programme, each herd was tested twice a year with a bulk tank milk
150 antibody ELISA test. For each campaign of testing, tests were performed
se0 for all the herds over a few weeks. Data on the number of cattle introduced
361 into each herd with the associated date of introduction were also available.
32 For the model evaluation, test data from the beginning of 2014 to the end
363 of 2016 were used. Risk factor data collected between 2010 and 2016 were
3sa available to model (possibly lagged) associations between risk factors and
365 latent status.

366 2.2.2 Test results

37 Test results were reported as optical density ratios (ODR). In the Loire-
s Atlantique CP, these ODRs are discretised into 3 categories using threshold
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10 values of 35 and 60. ODR values below 35 are associated with low antibody
a0 levels and ODR values above 60 are associated with high antibody levels.
sn Decision regarding which herds require further testing for the identification
sz and removal of PI animals is complex and involves the combination of test
a3 categories on 3 consecutive tests, spanning a year.

374 In this work, the ODR values were discretised in order to convert them
ws  into either seropositive (antibodies detected) or seronegative (no antibodies
we  detected) outcomes. The choice of the threshold to apply for the discreti-
sz sation was based on the ODR distribution, which was clearly bimodal. For
sz this purpose, the ODR distribution was modelled as a mixture of 2 normal
7o distributions using the R mixdist package (Macdonald & Du, 2018). Assum-
;0 ing that one of the distributions was associated with seronegativity and the
31 other one with seropositivity, the threshold that discriminated best between
;2 the 2 distributions was selected.

ss3 2.2.3 Selection of risk factors

;s A difficulty in the evaluation of putative risk factors was that Bayesian models
sgs  usually take time to run, especially with large datasets as used here. It was
sss therefore not possible to perform this selection with our Bayesian model.
;7 10 circumvent this problem, logistic models as implemented in the R glm
ss function (R Core Team, 2019) were used’. The outcome of these models was
389 seroconversion defined as a binary event, and covariates of interest were risk
300 factors for becoming status positive as defined through the 7 variable. All
301 herds with 2 consecutive test results whose first result was negative (ODR
392 below the chosen threshold) were capable of seroconverting. Of these herds,
33 the ones that had a positive result (ODR above the chosen threshold) on
304 the second test were considered as having seroconverted. The time of event
305 (seroconversion or not) was considered the mid-point between the 2 tests.

306 Two types of risk factors of new infection were evaluated: infection through
07 cattle introductions and infection through neighbourhood contacts (Qi et al.,
20s  2019). Cattle introduction variables were constructed from the number of an-
309 imals introduced into a herd on a given date. In addition to the raw number of
swo animals introduced, the natural logarithm of the number of animals (+1 be-
w1 cause In(0) is not defined) was also evaluated. This was to allow a decreasing
w2 effect of each animal as the number of animals introduced increased. Regard-

4The functions used to perform this evaluation are included in the STOCfree package.
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w3 ing the neighbourhood risk, the test result data were used. For each testing
was campaign, the municipality-level prevalence of test positives (excluding the
ws herd of interest) was calculated, and is subsequently termed ’local preva-
ws lence’. It was anticipated that when local seroprevalence would increase, the
w7 probability of new infection in the herd of interest would increase as well.
408 For all candidate variables, a potential problem was delayed detection,
w9 which relates to the fact that a risk factor recorded at one point in time may
a0 be detected through testing much later, even if the test is sensitive. For ex-
a1 ample, if a trojan cow (a non-PI female carrying a PI calf) is introduced into
s12  a herd, the lactating herd will only seroconvert when the PI calf is born and
a3 has had contact with the lactating herd. Therefore, for each candidate vari-
aa  able, the data were aggregated between the beginning of an interval (labelled
as lagl, in months from the outcome measurement) and the end of this inter-
ae val (labelled lag2, in months from the outcome measurement). Models with
sz all possible combinations of time aggregation between lagl and lag2 were
a1 run, with lagl set to 0 and lag2 set to 24 months. The best variables and
a0 time aggregation interval were selected based on low AIC value, biological
w20 plausibility and suitability for the Bayesian model.

=1 2.2.4 Bayesian models

122 Four different Bayesian models were considered. For all models, historical
w23 data were used for parameter estimation and the probability of infection on
«2¢ the last month in the dataset was predicted.

s2s Model 1 - Perfect routine test: in order to evaluate the monthly dy-
w26 namics of seropositivity and seronegativity, the Bayesian model was run
w27 without any risk factor and assuming that both test sensitivity and test
ws specificity were close to 1. The prior distributions for sensitivity and speci-
2o ficity were Se ~ Beta(10000, 1) (percentiles: 5 = 1, 50 = 1, 95 = 1) and
a0 Sp ~ Beta(10000, 1). Regarding infection dynamics, prior distributions were
a1 also specified for the prevalence of status positives (also test positives in this
2 scenario) on the first testing time p(S;") ~ Beta(1,1) (uniform on 0-1), the
a3 probability of becoming status positive 71 ~ Beta(1.5,10) (percentiles: 5
aa = 0.017, 50 = 0.109, 95 = 0.317), and the probability of remaining status
35 positive 7o ~ Beta(10,1.5) (percentiles: 5 = 0.683, 50 = 0.891, 95 = 0.983).
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i3 Model 2 - Perfect routine test and risk factors: in order to quantify
i3 the association between risk factors and the probability of becoming status
w38 positive if the test were close to perfect, the Bayesian model was run with
a30  the risk factors identified as associated with seroconversion on the previous
a0 step and using the same priors for sensitivity, specificity and 7 as in Model
a1 1 (Se ~ Beta(10000,1), Sp ~ Beta(10000,1), 72 ~ Beta(10,1.5)). The
a2 priors for risk factors were specified as normal distributions on the logit
a3 scale. The prior for the intercept was 0; ~ AN (—3,1) (on the probability
aa scale - percentiles: 5 = 0.01, 50 = 0.047, 95 = 0.205). This represented
as the prior probability of a new infection in a herd purchasing no animal and
me  with a local seroprevalence of 0. The priors for the other model coefficients
a7 were centred on 0 with a standard deviation of 2. On the logit scale, values
ws of -4 (2 standard deviations in this case) correspond to probabilities close
ao 10 0 (logit(-4) = (0.018) and values of 4 to probabilities that are close to 1
450 (10g1t(4) = (0982)

51 Model 3 - Imperfect routine test and risk factors: the objective
w2 of this model was to incorporate the uncertainty associated with test re-
ss3 sults in both parameter estimation and in the prediction of the probabili-
wsa ties of infection. The priors for test sensitivity and specificity were selected
ss5 based on the ODR distributions for seronegatives and seropositives iden-
6 tified by the mixture model. The following prior distributions were used:
ss7 Se ~ Beta(5000,260) (percentiles: 5 = 0.946, 50 = 0.951, 95 = 0.955) and
s Sp ~ Beta(5000,260). For the associations between risk factors and the
w9 probability of new infection, the same prior distributions as in Model 2 were
a0 Uused.

61 Model 4 - Imperfect routine test, confirmatory testing and risk fac-
w2 tors: the objective of this model was to assess the impact of confirmatory
w3 testing. The same prior distributions as in scenario 3 were used. In this
w4 case however, every time a positive test result was recorded, a new confir-
s matory test was randomly generated in the following month so that 85% of
e these tests were positive and 15% were negative. The confirmatory test was
w7 assumed to have both a sensitivity and a specificity close to 1.

468 For each model, 4 chains were run in parallel. The first 5 000 MCMC
o iterations were discarded (burn-in). The model was run for 5 000 more
a0 iterations of which 1 in 20 was stored for analysis. This yielded 1 000 draws
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Figure 4: Distribution of the test dates between 2014 and 2017 in 1687 herds
from Loire-Atlantique, France.

snn from the posterior distribution of each parameter. Convergence was assessed
a2 visually using traceplots. Each distribution was summarised with its median
a3 and 95% credibility interval.

« 3 Results

as 3.1 Test results

sre  There were 9725 available test results from 1687 herds. Most herds were
a7 tested in February and September (See Figure 4). Two normal distributions
as were fit to the ODR data using the R mixdist package (Figure 5). The distri-
a9 bution for seronegatives had a mean and standard deviation of 7.1 and 16.3
s0 respectively. The distribution for seropositives had a mean and standard
w1 deviation of 57 and 13 respectively. There were 58.6% and 41.4% of obser-
sg2 vations in the seronegative and seropositive distributions respectively. ODR
ss3 values above 35 (21% of ODR values) were categorised as test positive and
isa ODR values below 35 were categorised as test negative. The sensitivity and
a5 the specificity of the threshold value of 35 for the classification of test results
s86  With respect to seropositivity were estimated using the fitted distributions
se7  as the gold standard. These estimated sensitivity and specificity were 0.956
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Figure 5: Distribution of the observed optical density ratios (histogramme)
and fitted mixture of normal distributions (red dashed curves) for the bulk
tank milk test results used in the analyses.

sss and 0.955 respectively. In the Bayesian models in which the latent status
w9 Was seropositivity, the prior distributions for sensitivity and specificity were
w0 centred on these values.

w1 3.2 Selection of risk factors

w2 Risk factors related to animal introductions and seroprevalence were evalu-
w03 ated with logistic models. The model outcome was a seroconversion event.
sa A first step of the analysis was, for each variable, to identify the time in-
05 terval that was the most predictive of an observed seroconversion. Figure 6
we presents the AIC values associated with each possible interval for the vari-
a7 ables In(Number of animals introduced + 1) and local seroprevalence.

408 For the animal introduction variables, for the same time interval, the
a0 AlCs of the models of the untransformed number of animals were higher
so0 than the ones for the log transformed values (not shown). It can also be
so0 noted that considering longer intervals (further away from the diagonal) was
sz usually better than considering short intervals (close to the diagonal). It
so3 may be that some herds never buy any animal while, on average, herds that
sos  buy once have already done it in the past. In this case, it is possible that
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Figure 6: AIC values associated with logistic models of the association be-
tween 2 variables and the probability of seroconversion between 2 tests. The
variable evaluated on the left-hand side panel is the sum of the log(number
of animals introduced + 1) between lagl and lag2. The variable evaluated
on the right-hand side panel is the max of the local seroprevalence between
lagl and lag2.

sos the infection was introduced several times, while it is not possible to know
sos  which animal introduction was associated with herd seroconversion. This
sz could explain the apparent cumulative effect of the number of introductions.
sos Lhe cells that are close to the diagonal are associated with short intervals.
soo Considering one month intervals, the probability of infection was highest for
s10  introductions made 8 months from the month of seroconversion.

511 Local seroprevalence was evaluated from data collected in 2 different test-
512 Ing campaigns per year, as shown in Figure 4. For this reason, in the investi-
si3 gation of lagged relationships between local seroprevalence and the probabil-
s14 ity of seroconversion, the maximum local seroprevalence was computed, and
si5. not the sum as for the number of animals introduced. The strength of as-
s16  sociation between local seroprevalence and herd seroconversion was greatest
siz for local seroprevalence 9 months prior to herd seroconversion.

518 A final multivariable logistic model with an animal introduction variable
sio and a local seroprevalence variable was constructed. In the choice of the
s20 time intervals to include in this model, the following elements were consid-
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Table 2: Results of the final logistic model of the probability of seroconversion
between consecutive tests.

lagl lag2 Estimate p-value

Intercept - -1.96  7.99¢-306
In(Number animals introduced +1) 8 8 0.38 5.70e-10
local seroprevalence 9 9 4.59 3.39e-13

s21 ered. First, the Bayesian model runs with a monthly time step. Aggregating
s2 data over several months would result in including the same variable sev-
s23 eral times. Secondly, historical data may sometimes be limited. Having the
s2¢  smallest possible value for the end of the interval could be preferable. For
s25 this reason the variables considered for the final model were the natural log-
s26 arithm of the number of animals introduced 8 months prior to the month of
527 seroconversion as well as the local seroprevalence 9 months prior to the month
s28  Of seroconversion. The results of this model are presented in Table 2. All
s20 variables were highly significant. The model intercept was the probability of
s30 seroconversion in a herd introducing no animals and with local seroprevalence
s31. of 0 in each of the time intervals considered. The probability of seroconver-
532 sion between 2 tests corresponding to this scenario was of 0.124. Buying 1,
s33. 10 or 100 animals increased this estimated probability to 0.171, 0.866 and 1
s3a  respectively. Buying no animals and observing a seroprevalence of 0.2 (pro-
s3s portion of seropositives in the dataset) was associated with a probability of
536 seroconversion of 0.261.

= 3.3 Bayesian models

s38 Running each of the 4 models for the 1687 herds with 3 years of data took on
s39 average 7 hours per model. In models 2 to 4, the candidate covariates were
ss0 the natural logarithm of the number of animals introduced 8 months before
sa1  status evaluation/prediction as well as the local seroprevalence 9 months
saz prior. The 95% credibility interval for the estimated coefficient associated
sa3 with local seroprevalence included 0. This variable was therefore removed
sas from the models and only cattle introductions were considered.
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Table 3: Median (2.5%, 97.5%) of the parameter posterior distributions used
in the 4 Bayesian models evaluated. Model 1: Perfect routine test; Model
2: Perfect routine test and risk factors; Model 3: Imperfect routine test and
risk factors; Model 4: Imperfect routine test, confirmatory testing and risk

factors.
Parameter Model 1 Model 2 Model 3 Model 4
Se BTM ODR 1 (0.999, 1) 1(1,1) 0.948 (0.942, 0.953)  0.949 (0.944, 0.955)
Se confirmatory - - - 0.976 (0.973, 0.98)
Sp BTM ODR 1 (0.999, 1) 1(0.999, 1) 0.932 (0.926, 0.938) 0.971 (0.964, 0.978)
Sp confirmatory - - - 1(1,1)
rl 0.029 (0.027, 0.032) - -
Ty 0.965 (0.962, 0.967) 0.964 (0.961, 0.967) 0.994 (0.993, 0.996) 0.974 (0.97, 0.977)
6, (Intercept) - -3.631 (-3.718, -3.545) -4.803 (-4.985, -4.646) -3.825 (-3.94, -3.711)
0 . 0.580 (0.482, 0.684)  0.682 (0.522, 0.813)  0.665 (0.547, 0.776)

sas 3.3.1 Model parameters

sa6  Figure 7 and Table 3 show the distributions of model parameters for the 4
saz models. Figure 8 shows the predicted probability of becoming status positive
sae as a function of the number of animals introduced 9 months before status
sa9  evaluation.

550 In Models 1 and 2, the prior distributions put on sensitivity and speci-
ss1 ficity were very close to 1. With these models, the latent status corresponded
ss2 to the test result. In effect, they modelled the monthly probabilities of tran-
ss3 sition between BTM test negative and BTM test positive. In this case, the
s« median (percentile 2.5 - percentile 97.5) probability of becoming status pos-
sss itive between consecutive months was 0.029 (0.027 - 0.032). This represents
sse a probability of becoming status positive over a 12 month period of 0.298
ss7 (0.280 - 0.323). For status positive herds, the monthly probability of remain-
sse ing positive was of 0.965 which represents a probability of still being status
sso  positive 12 months later of 0.652 (0.628-0.669). In model 2, a risk factor was
seo incorporated into the estimation. The model intercept was much lower than
ss1  the estimate from the logistic model estimated in the variable selection step.
se2 ' This was due to the different time steps considered (1 month vs. half a year).
s63  On the other hand, the estimate for the log number of animals introduced
sea  Was higher.

565 In model 3, the prior distributions for test sensitivity and specificity were
ses centred on 0.95 based on the mixture of 2 normal distributions for seroneg-
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Figure 7. Parameters posterior distributions for the 4 Bayesian models. Model 1: Perfect routine test;
Model 2: Perfect routine test and risk factors; Model 3: Imperfect routine test and risk factors; Model 4:
Imperfect routine test, confirmatory testing and risk factors. Sensitivities and specificities close to 1 are
not shown to facilitate reading. The dashed lines correspond to the distributions of the confirmatory tests.
Parameters related to status dynamics are 71 (probability of becoming status positive between consecutive
months) and 72 (probability of remaining status positive). 71 was only estimated for the model without
risk factors (model 1). The parameters for the association between risk factors and the probability of
becoming status positive are 1 and 62. 0; is the intercept of the logistic model and 0> is the coefficient
associated with the log of the number of animals introduced 8 months before status evaluation/prediction.
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se7 atives and seropositives that described best the BTM ODR data (see Sec-
ses  tion 3.1). With this model, the latent status corresponded to seropositivity.
seo ' L'his assumption allowed the effect of having an imperfect test on the estima-
s7o  tion of the different model parameters to be investigated. In this scenario,
s1 the posterior distribution for sensitivity was close to the prior, but the poste-
s72 rior for the specificity was slightly lower. On the other hand, the distribution
s73 for 75 was higher than when the test was considered perfect. This implies
s that the model identified some test positives as false positives, but that the
s7s ones that retained a positive status remained positive for longer. Compared
sze  to Model 2, the probability of becoming status positive was lower in herds
577 buying no animals (model intercept), and tended to increase more rapidly
s7s - with the number of animals introduced (62), although for 100 animals intro-
s7o  duced, the probability of becoming status positive was still lower than with
ss0  the other models (Figure 8). Because of the imperfect sensitivity of routine
ss1  testing, some herds that were seronegative at a test while seropositive at the
ss2  previous or following tests were classified as false negative by the model and
ss3 thereby were not included in the estimation of 7, which may have decreased
ss« the estimated strength of association between cattle introduction and new
ses infection. However, the estimates produced by this should be more accurate.
586 In model 4, confirmatory testing was added, with a testing procedure as-
sz sumed to have perfect sensitivity and specificity for the detection of farms
s with infected animals. This resulted in several differences with model 3,
sso  which illustrate the interplay between data and prior information. The added
so0 confirmatory negative results often contradicted the data because, they were
so1  generally followed by a positive routine test. This had the following conse-
so2 quences. The posterior distribution for the sensitivity of confirmatory testing
s03  was lower than its prior distribution, indicating that herds negative to con-
so4 firmatory testing were classified as false negatives more often than suggested
sos by the priors. The fact that the estimated value for the specificity of BTM
so6 testing was higher than in Model 3 shows that herds positive to routine test-
so7 ing were considered to be true positives slightly more often. The fact that
sos the estimated value for 7 was lower than in Model 3 shows that status posi-
so0 tive herds tended to clear infection more quickly, which allowed a more rapid
s0 status change between routine and confirmatory testing. Because Model 4
so1 resulted in more frequent changes in status, the coefficients for the associ-

s02 ation between cattle introduction and new infections (Figure 8) were closer
03 between Model 4 and Model 2 than between Model 4 and Model 3.
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Figure 8: Predicted probability of new infection as a function of the num-
ber of animals introduced 8 months before the month of interest for the
Bayesian models 2 to 4. Model 2: Perfect routine test and risk factors;
Model 3: Imperfect routine test and risk factors; Model 4: Imperfect routine
test, confirmatory testing and risk factors. The lines represent the median
predicted values. The shaded areas represent the 95% credibility intervals.
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s0sa 3.3.2 Predicted probabilities of infection

sos Figure 9 shows the distributions of herd-level probabilities of infection pre-
s0s dicted by the 4 Bayesian models. These probability distributions are bimodal
sor for all models. The left-hand side corresponds to herds that were predicted
s0s Status negative on the month before the month of prediction. These are
s00 associated to becoming status positive, i.e. 7. The right-hand side of the
s10 distributions corresponds to herds that were predicted status positive on the
su1 month before the month of prediction. These are associated to remaining
s12 status positive, i.e. 7. For models 3 and 4, which incorporate both risk
s13 factors and test uncertainty, the modes are closer to 0 and 1 than for the
s1a  Other 2 models. For Model 4, there is a third mode between 0.4 and 0.5.
s1s 'This mode was associated with confirmatory testing.

616 Figure 10 shows the distributions of the predicted probability of being
s17 status positive for 4 herds. It can be seen that herds that were consistently
s1s  megative (positive) to the test had extremely low (high) probabilities of being
10 status positive. Accounting for the number of animals introduced increased
s20 the probability of infection in the herds that were test negative.

= 4 Dilscussion

s22 'This article describes a statistical framework for the prediction of an infection
23 related status from longitudinal data generated by CPs against infectious
s24 diseases of farm animals. The statistical model developed estimates a herd
s2s level probability of being latent status positive on a specific month, based
s26 on input data that can vary in terms of the types of test used, frequency
sz Of testing and risk factor data. This is achieved by modelling the latent
s28 status with the same discrete time step, regardless of the frequency with
s20  which input data are available, and by modelling changes in the latent status
e30 between consecutive time steps. This model therefore fulfils one of our main
s31  Objectives which was to be able to integrate heterogeneous information into
e32 the estimation. However, in order to be able to compare the output of this
633 model run on data from different CPs, the definition of the latent status
63« should be the same.

635 In this model, the latent status is mostly defined by the prior distribu-
e3¢ tions put on the different model parameters. In setting the prior distributions
s37 there are two issues: setting the distribution’s central value (mean, median
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Figure 9: Distributions of the predicted probabilities of being status positive
for all herds with the 4 Bayesian models evaluated. Model 1: Perfect routine
test; Model 2: Perfect routine test and risk factors; Model 3: Imperfect
routine test and risk factors; Model 4: Imperfect routine test, confirmatory
testing and risk factors.
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Figure 10: Distribution of predicted probabilities of being status positive on
the month of prediction for 4 herds with the 4 models compared. Model 1:
Perfect routine test; Model 2: Perfect routine test and risk factors; Model 3:
Imperfect routine test and risk factors; Model 4: Imperfect routine test, con-
firmatory testing and risk factors. Herd 1 was test negative for 6 consecutive
tests, introduced no animal. Herd 2 was test negative for 6 consecutive tests,
introduced animals regularly (196 associated with the month of prediction).
Herd 3 was test negative on the first 5 tests and test positive on the month
of prediction, introduced animals regularly (3 introductions associated with
the month of prediction). Herd 4 was test negative on the first 2 tests and
test positive on the last 4 tests, introduced animals regularly.
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e3s ...) and setting the distribution width. Choosing the wrong central value,
630 1.e. the prior distribution does not include the true parameter value, can lead
sa0  t0 systematic error (bias) or absence of convergence. This problem will be
sa1 more important as prior distributions become narrower. Setting prior distri-
sa2 butions that are too wide can lead to a lack of convergence, when multiple
sa3 combinations of parameter values are compatible with the data. This was a
s4« problem in initial modelling of the BVDV data (not shown). Putting narrow
esas prior distributions on test sensitivity and test specificity allowed the model
sas to converge. These narrow distributions imply very strong hypotheses on
sa7  test characteristics.

648 The definition of prior distributions for test characteristics that reflect
sao the latent status of interest is challenging (Duncan et al., 2016). This was
eso apparent in the application to infection by the BVDV we presented. For
es1  the trade of animals from herds that are free from infection by the BVDV,
es2 the latent status of interest was the presence of at least one PI animal in
es3 the herd. The test data available to estimate the probability of this event
esa  were measures of bulk tank milk antibody levels which were used to define
es5 seropositivity as a binary event. Although milk antibody level is associated
ess  with the herd prevalence of antibody positive cows (Beaudeau et al., 2001),
57 Seropositive cows can remain long after all the PIs have been removed from
ess  a herd. Furthermore, vaccination induces an antibody response which may
eso result in vaccinated herds being positive to serological testing regardless of
sso PI animal presence (Raue et al., 2011; Booth et al., 2013). Therefore, the
se1  specificity of BTM seropositivity, i.e. the probability for herds with no PI
ss2 animals to be test negative, is less than 1. More importantly, this specificity
s63 depends on the context; i.e. on the CP. PI animals can be identified and
sea removed more or less quickly depending on the CP, the proportion of herds
ses vaccinating and the reasons for starting vaccination can differ between CPs.
se6 Lest sensitivity can also be imperfect. Continuing with the example of bulk
sez tank milk testing, contacts between PI animals present on the farm and the
ses lactating herd may be infrequent, which would decrease sensitivity. In this
se0 case, the sensitivity of the testing procedure is the sensitivity of the test
s70 for the detection of seroconversion in a group of animals mulitplied by the
s1 probability that the tested group has seroconverted if there is a PI animal in
s2 the herd. The probability of contact between PI animals and the lactating
er3 herd depends on how herds are organised, which could vary between CPs.
sz This problem is alleviated when newborn calves are tested because the group
ers of animals tested is the group in which the infectious animals are most likely
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s76  to be present. Furthermore, with BTM testing, the contribution of each
sz seropositive cow to the BTM decreases as herd size increases which can result
ers in differences in BTM test sensitivity associated with different herd sizes
s7o  between CPs.

680 The effects of using different prior distributions for test characteristics
ss1 on latent status definition, parameter estimation and probability prediction
es2  were evaluated. In models 1 and 2, the dichotomised BTM antibody test
ss3 results were modelled assuming perfect sensitivity and perfect specificity.
esa  With these assumptions, the latent status was the dichotomised test results.
sss In Model 3, the BTM test was assumed to have both a sensitivity and a speci-
sss ficity concentrated around 95%, based on the normal distributions associated
ss7  with seronegativity and seropositivity identified by a mixture model. The la-
ess tent status in Model 3 can therefore be described as seropositivity. Because
ss0 overall the probability of changing status was small, assuming an imperfect
so0 sensitivity lead to isolated negative test results in sequences of mostly pos-
so1 itive test results to be considered false negatives, as shown by the increase
sz 1n the estimated value for 7 between Model 2 and Model 3. This illustrates
s03 that in addition to test characteristics, status dynamics will determine the
sos latent status within herds. Model 4 was constructed to evaluate the impact
s0s Of incorporating confirmatory testing into the model. In CPs, herds that test
s0s positive are usually re-tested in order to rule out a false positive test, and
so7 to identify infected animals if needed. The testing procedure used in con-
sos firmatory testing usually has a high sensitivity and a higher specificity than
s99 routine testing in relation to the gold standard. When incorporated into the
700 model, this high quality information, in conjunction with wider prior distri-
701 butions on routine testing specificity, should allow the posterior distribution
702 of the specificity of routine testing to be revised towards the gold standard.
703 Indeed, if a confirmatory test comes back negative, then the corresponding
704 latent status will become negative with high probability. Given the low prob-
70s ability of becoming status negative between consecutive months, the latent
706 status on the month of routine testing has an increased probability of be-
707 ing negative, leading to a decrease in the specificity of routine testing. This
78 could not be adequately demonstrated in Model 4, because simulating test
700 results at random was often not consistent with patterns of test results in
710 individual herds. However, this confirmed the importance of status dynamics
711 in estimating the latent status.

712 Status dynamics contributed to the definition of the latent status in sev-
n3  eral ways. Negative test results interspersed with sequences of positive test
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71 results will be classified as latent status positive (i.e. as false negatives) more
75 often as test sensitivity decreases and 7, increases. Positive test results in-
76 terspersed with sequences of negative test results will be classified as latent
717 status negative (i.e. as false positives) with increased frequency as test speci-
ns ficity and 7 each decrease. With a perfect test (sensitivity and specificity
710 equal to 1), the model can learn the values of 71 and 75 from the data, and
720 the prior distributions put on these parameters can be uninformative. With
=1 decreasing values for test sensitivity and specificity, the information provided
722 through the prior distributions put on 7, and 75 becomes increasingly impor-
723 tant. The informative value of 7y and 75 will increase as the probability of
724 transition between latent status negative and latent status positive decrease,
725 1.e. when 77 is small and 75 is high.

726 When data on risk factors of new infection are available, the 7 parameter
727 is modelled as a function of these risk factors using logistic regression. In such
728 a case, prior distributions are put on the parameters of the logistic regression
7o and not on the the 7 parameter. In the application that we presented, we
730 used a prior distribution corresponding to a low probability of new infection
71 in the reference category (intercept: herds which introduced no animals) and
732 we centred the prior distribution for the association with cattle introductions
713 on a hypothesis of no association (mean = 0 on the logit scale). This allowed
73a  the model to estimate the association between the risk factor and the latent
735 status from historical data and to use the estimated association to predict
736 probabilities of being latent status positive on the month of prediction. As
737 expected, the prior distributions put on test characteristics had an impact
738 on the parameter estimates. In Model 3, the model intercept was lower and
730 the estimated association between becoming latent status positive and cattle
70 introduction was higher than in the other models. The most likely explana-
71 tion for this is that Model 3 allowed the highest level of discrepancy between
72 dichotomised test result and latent status, while assuming a low probability
73 of changing status between months. This resulted in negative test results
74 1n herds that were regularly positive to be classified as latent status positive
75 (false negatives, associated with lower test sensitivity, see Table 3) thereby re-
76 moving opportunities for new infections in herds that were regularly positive
77z while also buying animals. This would imply that the estimated association
s from model 3 is more closely associated with new infections than estimates
79 from the other models because herds that are regularly test positive have
70 less weight in the estimation. It would also have been possible to base the
751 prior distributions for the model coefficients on published literature. Unfor-
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752 tunately, estimates of the strengths of association between risk factors and
753 the probability of new infection are not readily available from the published
7sa literature or are hard to compare between studies (van Roon et al., 2020a).
7ss  However, estimates from the literature could allow the prior distributions to
756 be bounded within reasonable ranges.

757 Because the model takes a lot of time to run, the variables included in
758 the logistic regression were first identified with logistic models estimated by
70 maximum likelihood. This confirmed the importance of animal introduction
70 and neighbourhood contacts in new infections (Qi et al., 2019). However, in
761 the Bayesian models, the 95% credibility for the association between local
72 seroprevalence and new infection included 0 and this variable was therefore
763 not included. The reason for this was not elucidated in this work. Other risk
764 factors such as herd size, participation in shows or markets, the practice of
765 common grazing have shown a consistent association with the probability of
766 new infection by the BVDV (van Roon et al., 2020a). These variables were
767 not included in our model because the corresponding data were not available.
s One advantage of our approach is the possibility to choose candidate risk
79 factors to include in the prediction of infection based on the data available in
770 a given CP. The associations between the selected putative risk factors and
7 the probability of new infection can be estimated from these data.

772 Given the reasonably good performance of tests for the detection of BVDV
773 infection, the main advantage of incorporating these risk factors was not to
772 complement the test results on a month a test was performed, but rather to
775 enhance the timeliness of detection. Risk factors that are associated with
776 new infection will increase the predicted probability of infection regardless
77z of the availability of a test result. Therefore, when testing is not frequent,
778 infected herds could be detected more quickly if risk factors of infection are
779 recorded frequently. If the available data on risk factors of new infection
730 captured all the possible routes of new infection, it would be possible to
s perform tests more frequently in herds that have a higher probability of
72 infection as predicted by our model. In other words, our model could be
783 used for risk-based surveillance (Cameron, 2012).

784 In the CP from which the current data were used, herds are tested twice
7es a year. This could lead to a long delay between the birth of PI calves and
786 their detection through bulk tank milk testing. We addressed this problem
7 of delayed detection by proposing a method for the investigation of lagged
788 relationships between risk factor occurrence and new infections, and by in-
780 cluding lagged risk factor occurrences in the prediction of the probability of

32


https://doi.org/10.1101/2020.07.10.197426
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.10.197426. this version posted July 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

70 infection. In our dataset, herds purchasing cattle were more likely to have
71 seroconverted 8 months after the introduction. In the Bayesian model, cattle
702 introduction was modelled as affecting the probability of becoming status
73 positive 8 months after the introduction. It can be argued that infection is
704 present but not detected during this period, as the expression delayed detec-
705 tion suggests, and that the probability of infection should increase as soon
76 as risk factor occurrence is recorded. Modelling this phenomenon would be
707 possible by decreasing the test sensitivity for a period corresponding to the
78 lag used in the current version of the model. This would imply that for this
790 duration, any negative BTM test result would not provide any information
soo about the true status regarding infection and that the herd would have an
so1 increased predicted probability of infection. This could be incorporated in
so2 future versions of the model.

803 There are several questions related to this modelling framework that
soa would require further work. The model outputs are distributions of herd
sos level probabilities of infection. Defining herds that are free from infection
sos from these distributions will require decision rules to be developed based on
sor distribution summaries (likely a percentile) and cut-off values. It would also
sos be possible to model the probability of remaining infected between consecu-
soo tive tests (72) as a function of the control measures put in place in infected
si0 herds. Another area that requires further investigations is the evaluation
s1in of the modelling framework against a simulated gold standard to determine
sz whether it provides an added value compared to simpler methods. The avail-
s13  ability of the model code as a Github repository allows interested users to
s14 1mMprove or suggest improvements to our modelling framework.
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